Submission #644202

# Submission time Handle Problem Language Result Execution time Memory
644202 2022-09-24T03:50:17 Z otera Skyscraper (JOI16_skyscraper) C++17
100 / 100
320 ms 11680 KB
/**
 *    author:  otera
**/
#include<bits/stdc++.h>
#ifndef OTERA_MODINT
#define OTERA_MODINT 1


#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif


#include <utility>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

struct barrett {
    unsigned int _m;
    unsigned long long im;

    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    unsigned int umod() const { return _m; }

    unsigned int mul(unsigned int a, unsigned int b) const {

        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b


        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


namespace otera {
    using modint107 = atcoder::modint1000000007;
    using modint998 = atcoder::modint998244353;
    using modint = atcoder::modint;
}; //namespace otera

std::ostream& operator<<(std::ostream& out, const atcoder::modint1000000007 &e) {
    out << e.val();
    return out;
}

std::ostream& operator<<(std::ostream& out, const atcoder::modint998244353 &e) {
    out << e.val();
    return out;
}

std::ostream& operator<<(std::ostream& out, const atcoder::modint &e) {
    out << e.val();
    return out;
}

#endif // OTERA_MODINT
using namespace std;

#define int long long

using ll = long long;
using ld = long double;
using ull = unsigned long long;
using int128_t = __int128_t;
#define repa(i, n) for(int i = 0; i < n; ++ i)
#define repb(i, a, b) for(int i = a; i < b; ++ i)
#define repc(i, a, b, c) for(int i = a; i < b; i += c)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define rep(...) overload4(__VA_ARGS__, repc, repb, repa)(__VA_ARGS__)
#define rep1a(i, n) for(int i = 0; i <= n; ++ i)
#define rep1b(i, a, b) for(int i = a; i <= b; ++ i)
#define rep1c(i, a, b, c) for(int i = a; i <= b; i += c)
#define rep1(...) overload4(__VA_ARGS__, rep1c, rep1b, rep1a)(__VA_ARGS__)
#define rev_repa(i, n) for(int i=n-1;i>=0;i--)
#define rev_repb(i, a, b) assert(a > b);for(int i=a;i>b;i--)
#define rev_rep(...) overload3(__VA_ARGS__, rev_repb, rev_repa)(__VA_ARGS__)
#define rev_rep1a(i, n) for(int i=n;i>=1;i--)
#define rev_rep1b(i, a, b) assert(a >= b);for(int i=a;i>=b;i--)
#define rev_rep1(...) overload3(__VA_ARGS__, rev_rep1b, rev_rep1a)(__VA_ARGS__)
typedef pair<int, int> P;
typedef pair<ll, ll> LP;
#define pb push_back
#define pf push_front
#define ppb pop_back
#define ppf pop_front
#define eb emplace_back
#define fr first
#define sc second
#define all(c) c.begin(),c.end()
#define rall(c) c.rbegin(), c.rend()
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define Sort(a) sort(all(a))
#define Rev(a) reverse(all(a))
#define Uniq(a) sort(all(a));a.erase(unique(all(a)),end(a))
#define si(c) (int)(c).size()
inline ll popcnt(ull a){ return __builtin_popcountll(a); }
#define kth_bit(x, k) ((x>>k)&1)
#define unless(A) if(!(A))
ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }
ll intpow(ll a, ll b, ll m) {ll ans = 1; while(b){ if(b & 1) (ans *= a) %= m; (a *= a) %= m; b /= 2; } return ans; }
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; }
#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define ULL(...) ull __VA_ARGS__;in(__VA_ARGS__)
#define STR(...) string __VA_ARGS__;in(__VA_ARGS__)
#define CHR(...) char __VA_ARGS__;in(__VA_ARGS__)
#define DBL(...) double __VA_ARGS__;in(__VA_ARGS__)
#define LD(...) ld __VA_ARGS__;in(__VA_ARGS__)
#define vec(type,name,...) vector<type>name(__VA_ARGS__)
#define VEC(type,name,size) vector<type>name(size);in(name)
#define vv(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))
#define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));in(name)
#define vvv(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))
template <class T> using vc = vector<T>;
template <class T> using vvc = vector<vc<T>>;
template <class T> using vvvc = vector<vvc<T>>;
template <class T> using vvvvc = vector<vvvc<T>>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>;
template <class T, class U> using umap = unordered_map<T, U>;
template<class T> void scan(T& a){ cin >> a; }
template<class T> void scan(vector<T>& a){ for(auto&& i : a) scan(i); }
void in(){}
template <class Head, class... Tail> void in(Head& head, Tail&... tail){ scan(head); in(tail...); }
void print(){ cout << ' '; }
template<class T> void print(const T& a){ cout << a; }
template<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout << ' '; print(*i); } }
int out(){ cout << '\n'; return 0; }
template<class T> int out(const T& t){ print(t); cout << '\n'; return 0; }
template<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); cout << ' '; out(tail...); return 0; }
#define CHOOSE(a) CHOOSE2 a
#define CHOOSE2(a0,a1,a2,a3,a4,x,...) x
#define debug_1(x1) cout<<#x1<<": "<<x1<<endl
#define debug_2(x1,x2) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<endl
#define debug_3(x1,x2,x3) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<", "#x3<<": "<<x3<<endl
#define debug_4(x1,x2,x3,x4) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<", "#x3<<": "<<x3<<", "#x4<<": "<<x4<<endl
#define debug_5(x1,x2,x3,x4,x5) cout<<#x1<<": "<<x1<<", "#x2<<": "<<x2<<", "#x3<<": "<<x3<<", "#x4<<": "<<x4<<", "#x5<<": "<<x5<<endl
#ifdef DEBUG
#define debug(...) CHOOSE((__VA_ARGS__,debug_5,debug_4,debug_3,debug_2,debug_1,~))(__VA_ARGS__)
#define dump(...) { print(#__VA_ARGS__); print(":"); out(__VA_ARGS__); }
#else
#define debug(...)
#define dump(...)
#endif

struct io_setup {
    io_setup(int precision = 20) {
        ios::sync_with_stdio(false);
        cin.tie(0);
        cout << fixed << setprecision(precision);
    }
} io_setup_ {};

using mint = otera::modint107;

void solve() {
    INT(n, l);
    VEC(int, a, n);
    Sort(a);
    if(n == 1) {
        out(1);
        return;
    }
    vector dp(n + 3, vector(l + 3, vc<mint>(3, 0)));
    dp[0][0][0] = 1;
    auto ndp = dp;
    int pre = 0;
    rep(i, n) {
        ndp.assign(n + 3, vvc<mint>(l + 3, vc<mint>(3, 0)));
        for(int j = 0; j <= i; ++ j) {
            for(int x = 0; x <= l; ++ x) {
                rep(f, 3) {
                    if(2 * j - f < 0) continue;
                    // if(dp[i][j][x][f] != 0) debug(i, j, x, f, dp[i][j][x][f]);
                    // 連結成分が1つ増える
                    if(i != n - 1) {
                        if(f + 1 <= 2) {
                            int nx = x + (a[i] - pre) * (2 * j - f);
                            if(0 <= nx and nx <= l) ndp[j + 1][nx][f + 1] += dp[j][x][f] * (f == 0 ? mint(2) : mint(1));
                        }
                        {
                            int nx = x + (a[i] - pre) * (2 * j - f);
                            if(0 <= nx and nx <= l) ndp[j + 1][nx][f] += dp[j][x][f];
                        }
                    }
                    // 連結成分が1つ減る
                    if(j >= 2) {
                        if(f == 0 and i != n - 1) {
                            int nx = x + (a[i] - pre) * (2 * j - f);
                            if(0 <= nx and nx <= l) ndp[j - 1][nx][f] += dp[j][x][f] * mint(j) * mint(j - 1);
                        }
                        if(f == 1 and i != n - 1) {
                            int nx = x + (a[i] - pre) * (2 * j - f);
                            if(0 <= nx and nx <= l) ndp[j - 1][nx][f] += dp[j][x][f] * (mint(j - 1) * mint(j - 2) + mint(j - 1));
                        }
                        if(f == 2) {
                            if(i == n - 1 and j == 2 and f == 2) {
                                int nx = x + (a[i] - pre) * (2 * j - f);
                                if(0 <= nx and nx <= l) ndp[j - 1][nx][f] += dp[j][x][f];
                            } 
                            if(j >= 3) {
                                int nx = x + (a[i] - pre) * (2 * j - f);
                                if(0 <= nx and nx <= l) ndp[j - 1][nx][f] += dp[j][x][f] * (mint(j - 2) * mint(j - 3) + mint(j - 2) * mint(2));
                            }
                        }
                    }
                    // 連結成分の個数は変わらず
                    {
                        if((f == 0 and j >= 1) or (f == 1 and i == n - 1 and j == 1)) {
                            int nx = x + (a[i] - pre) * (2 * j - f);
                            if(0 <= nx and nx <= l) ndp[j][nx][f + 1] += dp[j][x][f] * (f == 0 ? mint(2) : mint(1)) * mint(j);
                        }
                        if(f == 1 and i != n - 1) {
                            int nx = x + (a[i] - pre) * (2 * j - f);
                            if(0 <= nx and nx <= l) ndp[j][nx][f + 1] += dp[j][x][f] * mint(j - 1);
                        }
                        if(j >= 1) {
                            int nx = x + (a[i] - pre) * (2 * j - f);
                            if(0 <= nx and nx <= l) ndp[j][nx][f] += dp[j][x][f] * mint(2 * j - f);
                        }
                    }
                }
            }
        }
        pre = a[i];
        swap(dp, ndp);
    }
    mint ans = 0;
    for(int x = 0; x <= l; ++ x) {  
        // debug(x, dp[n][1][x][2]);
        ans += dp[1][x][2];
    }
    out(ans);
}

signed main() {
    int testcase = 1;
    // in(testcase);
    while(testcase--) solve();
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 340 KB Output is correct
5 Correct 4 ms 1492 KB Output is correct
6 Correct 3 ms 1364 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 3 ms 1364 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 468 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 1 ms 468 KB Output is correct
6 Correct 1 ms 468 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 340 KB Output is correct
5 Correct 4 ms 1492 KB Output is correct
6 Correct 3 ms 1364 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 3 ms 1364 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 2 ms 468 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 468 KB Output is correct
21 Correct 3 ms 468 KB Output is correct
22 Correct 215 ms 7640 KB Output is correct
23 Correct 303 ms 11480 KB Output is correct
24 Correct 256 ms 8760 KB Output is correct
25 Correct 320 ms 11612 KB Output is correct
26 Correct 270 ms 9940 KB Output is correct
27 Correct 86 ms 3108 KB Output is correct
28 Correct 112 ms 3740 KB Output is correct
29 Correct 216 ms 6852 KB Output is correct
30 Correct 318 ms 11680 KB Output is correct