Submission #634756

#TimeUsernameProblemLanguageResultExecution timeMemory
634756rainliofficialTriple Jump (JOI19_jumps)C++17
100 / 100
1049 ms61784 KiB
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<int, int> pii; template<class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } #define sz(x) (int)x.size() /* Date: 2022/08/24 15:14 Problem Link: https://oj.uz/problem/view/JOI19_jumps Topic(s): Time Spent: Solution Notes: Consider pairs of possible (a, b), and let them be at indices (i, j). We observe that in range [i, j], a and b must be the two largest element, and everything in between is smaller. Therefore, we can fix whichever one of a or b that's smaller, and then find the other endpoint in O(N) time in total by using a monotone stack. One we have all (a, b), it is a matter of determining c. We can naively use a segment tree to query every c (subtask 2), or use a suffix max (subtask 3). To get the full solution, let's store the value of a + b at the least location of c that it corresponds to. Each node in segment tree would essientially store the following values: 1. max a+b 2. max c 3. max a+b+c */ void __print(int x) {cerr << x;} void __print(long x) {cerr << x;} void __print(long long x) {cerr << x;} void __print(unsigned x) {cerr << x;} void __print(unsigned long x) {cerr << x;} void __print(unsigned long long x) {cerr << x;} void __print(float x) {cerr << x;} void __print(double x) {cerr << x;} void __print(long double x) {cerr << x;} void __print(char x) {cerr << '\'' << x << '\'';} void __print(const char *x) {cerr << '\"' << x << '\"';} void __print(const string &x) {cerr << '\"' << x << '\"';} void __print(bool x) {cerr << (x ? "true" : "false");} template<typename T, typename V> void __print(const pair<T, V> &x); template<typename T> void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? ", " : ""), __print(i); cerr << "}";} template<typename T, typename V> void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ", "; __print(x.second); cerr << '}';} void _print() {cerr << "]\n";} template <typename T, typename... V> void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);} #ifdef DEBUG #define dbg(x...) cerr << "\e[91m"<<__func__<<":"<<__LINE__<<" [" << #x << "] = ["; _print(x); cerr << "\e[39m" << endl; #else #define dbg(x...) #endif const int MAXN = 2e5+5, INF = 1e9; int n, q; struct Node{ int ab, c, abc; }; struct segtree{ const int PO2 = 131072; // least power of 2 greater than MAXN; int n; Node identity = {-INF, -INF, -INF}; vector<Node> seg; vector<int> arr; void init(int n){ this->n = n; seg.resize(4*n, identity); // change to 4*N if we want to reinitialize the segtree multiple times on difference values of N } ll query(int a, int b){ if (a > b){ return -INF; } return query(0, 0, n-1, a, b).abc; } Node query(int node, int l, int r, int a, int b) { // inclusive 0-indexed if (a <= l && r <= b) { return seg[node]; } Node ans = identity; int mid = (l + r) / 2; if (a <= mid) { ans = combine(ans, query(node * 2 + 1, l, mid, a, b)); } if (b > mid){ ans = combine(ans, query(node * 2 + 2, mid + 1, r, a, b)); } return ans; } void update(int a, int x, bool updC) { // inclusive 0-indexed if (a >= n){ return; } update(0, 0, n-1, a, x, updC); } void update(int node, int l, int r, int a, int x, bool updC) { if (l == r) { if (updC){ ckmax(seg[node].c, x); }else{ ckmax(seg[node].ab, x); } seg[node].abc = seg[node].ab + seg[node].c; return; } int mid = (l + r) / 2; if (a <= mid) { update(node * 2 + 1, l, mid, a, x, updC); }else{ update(node * 2 + 2, mid + 1, r, a, x, updC); } seg[node] = combine(seg[node * 2 + 1], seg[node * 2 + 2]); } Node combine(Node a, Node b){ return {max(a.ab, b.ab), max(a.c, b.c), max({a.abc, b.abc, a.ab + b.c})}; } }; int main(){ cin.tie(0); ios_base::sync_with_stdio(0); // freopen("file.in", "r", stdin); // freopen("file.out", "w", stdout); cin >> n; vector<int> arr(n); for (int i=0; i<n; i++){ cin >> arr[i]; } // use monotonic stack to process the possible (a, b). // assume a > b vector<pii> ab; stack<pii> st; for (int i=n-1; i>=0; i--){ while (!st.empty() && st.top().first < arr[i]){ st.pop(); } if (!st.empty()){ ab.push_back({i, st.top().second}); } st.push({arr[i], i}); } stack<pii> st2; swap(st2, st); for (int i=0; i<n; i++){ while (!st.empty() && st.top().first < arr[i]){ st.pop(); } if (!st.empty()){ ab.push_back({st.top().second, i}); } st.push({arr[i], i}); } dbg(ab) segtree seg; seg.init(n); sort(ab.begin(), ab.end(), greater<pii>()); int pt = 0; vector<array<int, 3>> queries; cin >> q; for (int i=0; i<q; i++){ int l, r; cin >> l >> r; l--; r--; queries.push_back({l, r, i}); } sort(queries.begin(), queries.end(), [](const array<int, 3> a1, const array<int, 3> a2){ return make_pair(a1[0], a1[1]) > make_pair(a2[0], a2[1]); }); for (int i=0; i<n; i++){ seg.update(i, arr[i], true); } vector<int> ans(q); for (int i=0; i<q; i++){ while (pt < sz(ab) && ab[pt].first >= queries[i][0]){ seg.update(ab[pt].second + (ab[pt].second - ab[pt].first), arr[ab[pt].first] + arr[ab[pt].second], false); pt++; } ans[queries[i][2]] = seg.query(queries[i][0], queries[i][1]); } for (int i : ans){ cout << i << "\n"; } } /** * Debugging checklist: * - Reset everything after each TC * - Integer overflow, index overflow * - Special cases? */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...