Submission #632592

# Submission time Handle Problem Language Result Execution time Memory
632592 2022-08-20T11:42:56 Z Red_Inside Catfish Farm (IOI22_fish) C++17
44 / 100
1000 ms 66228 KB
//
#include <bits/stdc++.h>

#define ll long long
#define f first
#define s second
#define pb push_back
#define mp make_pair
#define o cout<<"BUG"<<endl;
#define FOR(i, j, n) for(int j = i; j < n; ++j)
#define forn(i, j, n) for(int j = i; j <= n; ++j)
#define nfor(i, j, n) for(int j = n; j >= i; --j)
#define all(v) v.begin(), v.end()
#define ld long double
#define ull unsigned long long

using namespace std;
const int maxn=1e5+100,LOG=20,mod=998244353;
int block = 106, timer = 0;
const ld EPS = 1e-18;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
#define IOS ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);

#define bt(i) (1 << (i))
//#define int ll
const ll inf=2e18;
#define y1 yy
#define prev pre
#define pii pair <int, int>

ll n, dp[4][maxn][2], dp1[maxn], dp2[maxn], c[maxn];
ll t[4*maxn][3][4], pu[4*maxn][3][4];
vector <pii> vec[maxn];

void push(int v, int tl, int tr, int x, int ty)
{
	if(ty == 3)
	{
		if(pu[v][x][ty] == -1)
		{
			pu[v * 2][x][ty] = -1;
			pu[v * 2 + 1][x][ty] = -1;
			t[v * 2][x][ty] = 0;
			t[v * 2 + 1][x][ty] = 0;
			pu[v][x][ty] = 0;
		}
	}
	else
	{
		if(pu[v][x][ty] == -inf)
		{
			pu[v * 2][x][ty] = -inf;
			pu[v * 2 + 1][x][ty] = -inf;
			t[v * 2][x][ty] = -inf;
			t[v * 2 + 1][x][ty] = -inf;
			pu[v][x][ty] = 0;
		}
	}
}

void upd(int v, int tl, int tr, int pos, ll val, int x, int ty)
{
	if(pos < tl || tr < pos) return;
	if(tl == tr)
	{
		t[v][x][ty] = val;
		return;
	}
	push(v, tl, tr, x, ty);
	upd(v * 2, tl, (tl + tr) / 2, pos, val, x, ty);
	upd(v * 2 + 1, (tl + tr) / 2 + 1, tr, pos, val, x, ty);
	if(ty == 3) t[v][x][ty] = t[v * 2][x][ty] + t[v * 2 + 1][x][ty];
	else
		t[v][x][ty] = max(t[v * 2][x][ty], t[v * 2 + 1][x][ty]);
}

ll get(int v, int tl, int tr, int l, int r, int x, int ty)
{
	if(l > tr || r < tl) return (ty == 3 ? 0 : -inf);
	if(l <= tl && tr <= r) return t[v][x][ty];
	push(v, tl, tr, x, ty);
	ll r1 = get(v * 2, tl, (tl + tr) / 2, l, r, x, ty);
	ll r2 = get(v * 2 + 1, (tl + tr) / 2 + 1, tr, l, r, x, ty);
	if(ty == 3) return r1 + r2;
	return max(r1, r2);
}

ll max_weights(int N, int m, vector <int> x, vector <int> y, vector <int> C)
{
	n = N;
	forn(0, i, m-1)
	{
		vec[x[i]+1].pb({y[i]+1, C[i]});
	}
	set <int> pos;
	for(auto j : vec[1])
	{
		c[j.f]++;
		if(c[j.f] == 1)
			pos.insert(j.f);
		/*if(j.f>1)
		{
			c[j.f-1]++;
			if(c[j.f-1]==1)
				pos.insert(j.f-1);
		}*/
		if(j.f<n)
		{
			c[j.f+1]++;
			if(c[j.f+1]==1)
				pos.insert(j.f+1);
		}
	}
	for(auto j : vec[2])
	{
		c[j.f]++;
		if(c[j.f] == 1)
			pos.insert(j.f);
		/*if(j.f>1)
		{
			c[j.f-1]++;
			if(c[j.f-1]==1)
				pos.insert(j.f-1);
		}*/
		if(j.f<n)
		{
			c[j.f+1]++;
			if(c[j.f+1]==1)
				pos.insert(j.f+1);
		}
	}
	forn(0, i, 2)
	{
		forn(0, j, 2)
		{
			pu[1][i][j] = -inf;
			t[1][i][j] = -inf;
		}
		t[1][i][3] = 0;
		pu[1][i][3] = -1;
	}
	int p = 0;
	for(auto j : vec[1])
	{
		upd(1, 1, n, j.f, j.s, p, 3);
	}
	for(auto j : pos)
	{
		dp[p][j][0] = 0;
	}
	dp1[p] = 0;
	dp2[p] = 0;
	for(auto j : pos)
	{
		upd(1, 1, n, j, max(dp[p][j][0], dp[p][j][1]), p, 1);
		upd(1, 1, n, j, dp[p][j][0] - get(1, 1, n, 1, j, p, 3), p, 0);
	}
	c[n]++;
	if(c[n] == 1) pos.insert(n);
	forn(2, i, n)
	{
		p = (p + 1) % 3;
		t[1][p][0] = -inf;
		t[1][p][1] = -inf;
		t[1][p][2] = -inf;
		t[1][p][3] = 0;
		pu[1][p][0] = -inf;
		pu[1][p][1] = -inf;
		pu[1][p][2] = -inf;
		pu[1][p][3] = -1;
		for(auto j : vec[i])
		{
			upd(1, 1, n, j.f, j.s, p, 3);
		}
		for(auto j : vec[i + 1])
		{
			c[j.f]++;
			if(c[j.f]==1)
				pos.insert(j.f);
			/*if(j.f>1)
			{
				c[j.f-1]++;
				if(c[j.f-1]==1)
					pos.insert(j.f-1);
			}*/
			if(j.f<n)
			{
				c[j.f+1]++;
				if(c[j.f+1]==1)
					pos.insert(j.f+1);
			}
		}
		if(i - 4 >= 1)
		{
			for(auto j : vec[i - 4])
			{
				c[j.f]--;
				if(c[j.f] == 0)
					pos.erase(j.f);
				/*if(j.f>1)
				{
					c[j.f-1]--;
					if(c[j.f-1]==0)
						pos.erase(j.f-1);
				}*/
				if(j.f<n)
				{
					c[j.f+1]--;
					if(c[j.f+1]==0)
						pos.erase(j.f+1);
				}
			}
		}
		for(auto j : pos)
		{
			dp[p][j][0] = -inf;
			dp[p][j][1] = -inf;
			upd(1, 1, n, j, max(dp[(p-1+3)%3][j][0],dp[(p-1+3)%3][j][1])+get(1, 1, n, 1, j, p, 3), (p-1+3)%3, 2);
		}
		dp1[p] = 0;
		for(auto j : pos)
		{
			dp[p][j][0] = max(dp[p][j][0], 
			dp2[(p-1+3)%3]+get(1, 1, n, 1, j, (p-1+3)%3, 3));
			dp[p][j][0] = max(dp[p][j][0], 
			get(1, 1, n, 1, j-1, (p-1+3)%3, 0)+get(1, 1, n, 1, j, (p-1+3)%3, 3));
			dp[p][j][0] = max(dp[p][j][0], 
			get(1, 1, n, 1, j, (p-2+3)%3, 1)+get(1, 1, n, 1, j, (p-1+3)%3, 3));
			dp[p][j][0] = max(dp[p][j][0],
			get(1, 1, n, j+1, n,(p-2+3)%3, 2));
			dp[p][j][1] = -inf;
			dp[p][j][1] = max(dp[p][j][1], 
			get(1, 1, n, j+1, n, (p-1+3)%3, 2)-get(1, 1, n, 1, j, p, 3));
		}
		dp1[p] = max(dp1[p], get(1, 1, n, 1, n, (p-1+3)%3, 2));
		dp2[p] = max(dp2[(p-1+3)%3], dp1[(p-1+3)%3]);
		for(auto j : pos)
		{
//			cout << i << " " << j << " " << dp[p][j][0] << " " << dp[p][j][1] << endl;
			upd(1, 1, n, j, max(dp[p][j][0], dp[p][j][1]), p, 1);
			upd(1, 1, n, j, dp[p][j][0] - get(1, 1, n, 1, j, p, 3), p, 0);
		}
	}
	ll ans = 0;
	for(auto i : pos)
	{
		ans = max(ans, dp[p][i][0]);
		ans = max(ans, dp[p][i][1]);
	}
	ans = max(ans, dp1[p]);
	ans = max(ans, dp2[p]);
	return ans;
}
# Verdict Execution time Memory Grader output
1 Execution timed out 1006 ms 63580 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 2644 KB Output is correct
2 Execution timed out 1075 ms 66228 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 104 ms 2772 KB Output is correct
2 Correct 97 ms 2804 KB Output is correct
3 Correct 413 ms 5688 KB Output is correct
4 Correct 414 ms 4828 KB Output is correct
5 Correct 673 ms 8276 KB Output is correct
6 Correct 631 ms 8320 KB Output is correct
7 Correct 650 ms 8276 KB Output is correct
8 Correct 658 ms 8336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 2 ms 2644 KB Output is correct
4 Correct 1 ms 2644 KB Output is correct
5 Correct 1 ms 2644 KB Output is correct
6 Correct 1 ms 2644 KB Output is correct
7 Correct 1 ms 2644 KB Output is correct
8 Correct 2 ms 2644 KB Output is correct
9 Correct 2 ms 2644 KB Output is correct
10 Correct 6 ms 2772 KB Output is correct
11 Correct 3 ms 2780 KB Output is correct
12 Correct 5 ms 2772 KB Output is correct
13 Correct 2 ms 2644 KB Output is correct
14 Correct 4 ms 2808 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 2 ms 2644 KB Output is correct
4 Correct 1 ms 2644 KB Output is correct
5 Correct 1 ms 2644 KB Output is correct
6 Correct 1 ms 2644 KB Output is correct
7 Correct 1 ms 2644 KB Output is correct
8 Correct 2 ms 2644 KB Output is correct
9 Correct 2 ms 2644 KB Output is correct
10 Correct 6 ms 2772 KB Output is correct
11 Correct 3 ms 2780 KB Output is correct
12 Correct 5 ms 2772 KB Output is correct
13 Correct 2 ms 2644 KB Output is correct
14 Correct 4 ms 2808 KB Output is correct
15 Correct 4 ms 2900 KB Output is correct
16 Correct 5 ms 2772 KB Output is correct
17 Correct 107 ms 4452 KB Output is correct
18 Correct 92 ms 4760 KB Output is correct
19 Correct 102 ms 4564 KB Output is correct
20 Correct 80 ms 4632 KB Output is correct
21 Correct 75 ms 4564 KB Output is correct
22 Correct 150 ms 6420 KB Output is correct
23 Correct 83 ms 3236 KB Output is correct
24 Correct 135 ms 3952 KB Output is correct
25 Correct 8 ms 2772 KB Output is correct
26 Correct 55 ms 3156 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 1 ms 2644 KB Output is correct
3 Correct 2 ms 2644 KB Output is correct
4 Correct 1 ms 2644 KB Output is correct
5 Correct 1 ms 2644 KB Output is correct
6 Correct 1 ms 2644 KB Output is correct
7 Correct 1 ms 2644 KB Output is correct
8 Correct 2 ms 2644 KB Output is correct
9 Correct 2 ms 2644 KB Output is correct
10 Correct 6 ms 2772 KB Output is correct
11 Correct 3 ms 2780 KB Output is correct
12 Correct 5 ms 2772 KB Output is correct
13 Correct 2 ms 2644 KB Output is correct
14 Correct 4 ms 2808 KB Output is correct
15 Correct 4 ms 2900 KB Output is correct
16 Correct 5 ms 2772 KB Output is correct
17 Correct 107 ms 4452 KB Output is correct
18 Correct 92 ms 4760 KB Output is correct
19 Correct 102 ms 4564 KB Output is correct
20 Correct 80 ms 4632 KB Output is correct
21 Correct 75 ms 4564 KB Output is correct
22 Correct 150 ms 6420 KB Output is correct
23 Correct 83 ms 3236 KB Output is correct
24 Correct 135 ms 3952 KB Output is correct
25 Correct 8 ms 2772 KB Output is correct
26 Correct 55 ms 3156 KB Output is correct
27 Correct 37 ms 4536 KB Output is correct
28 Correct 516 ms 11476 KB Output is correct
29 Execution timed out 1055 ms 15264 KB Time limit exceeded
30 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 104 ms 2772 KB Output is correct
2 Correct 97 ms 2804 KB Output is correct
3 Correct 413 ms 5688 KB Output is correct
4 Correct 414 ms 4828 KB Output is correct
5 Correct 673 ms 8276 KB Output is correct
6 Correct 631 ms 8320 KB Output is correct
7 Correct 650 ms 8276 KB Output is correct
8 Correct 658 ms 8336 KB Output is correct
9 Execution timed out 1098 ms 43980 KB Time limit exceeded
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Execution timed out 1006 ms 63580 KB Time limit exceeded
2 Halted 0 ms 0 KB -