Submission #627635

# Submission time Handle Problem Language Result Execution time Memory
627635 2022-08-12T17:49:53 Z dqhungdl Catfish Farm (IOI22_fish) C++17
100 / 100
464 ms 73464 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> ii;
const int MAX = 1e5 + 5, SINF = 2e9;
const long long INF = 1e18;
bool markLow[MAX];
vector<ii> g[MAX];
vector<long long> S[MAX];
vector<vector<long long>> f[MAX];

struct FenwickTreeLow {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeLow(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i <= n; i += i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i > 0; i -= i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

struct FenwickTreeHigh {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeHigh(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i > 0; i -= i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i <= n; i += i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

long long calcCostLeft(int col, int L) {
    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
    return l ? S[col][l - 1] : 0;
}

long long calcCostRight(int col, int R) {
    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
    return r >= 0 ? S[col][r] : 0;
}

long long max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    for (int i = 0; i < M; i++) {
        g[X[i]].emplace_back(Y[i], W[i]);
        if (!Y[i])
            markLow[X[i]] = true;
    }
    for (int i = 0; i < N; i++) {
        if (!markLow[i])
            g[i].emplace_back(0, 0);
        g[i].emplace_back(N, 0);
    }
    for (int i = 0; i < N; i++) {
        sort(g[i].begin(), g[i].end());
        S[i].resize(g[i].size());
        S[i][0] = g[i][0].second;
        for (int j = 1; j < g[i].size(); j++)
            S[i][j] = S[i][j - 1] + g[i][j].second;
        f[i].resize(g[i].size(), vector<long long>(2));
    }
    FenwickTreeLow lowTree(N + 5), lowJump(N + 5);
    FenwickTreeHigh highTree(N + 5), highJump(N + 5);
    long long rs = 0;
    for (int i = 1; i < N; i++) {
        if (i > 1) {
            lowJump.reset(), highJump.reset();
            for (int t = 0; t < g[i - 2].size(); t++) {
                lowJump.update(t, f[i - 2][t][1]);
                highJump.update(t, f[i - 2][t][1] + calcCostRight(i - 1, g[i - 2][t].first));
            }
        }
        lowTree.reset(), highTree.reset();
        for (int t = 0; t < g[i - 1].size(); t++) {
            lowTree.update(t, f[i - 1][t][0] - calcCostLeft(i - 1, g[i - 1][t].first));
            highTree.update(t, f[i - 1][t][1] + calcCostRight(i, g[i - 1][t].first));
        }
        for (int j = 0; j < g[i].size(); j++) {
            if (i > 1) {
                int low = upper_bound(g[i - 2].begin(), g[i - 2].end(), ii(g[i][j].first, SINF)) - g[i - 2].begin() - 1;
                long long tmp = lowJump.get(low) + calcCostRight(i - 1, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

                int high = low + 1;
                tmp = highJump.get(high);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);
            } else {
                long long tmp = calcCostRight(0, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);
            }

            int low = upper_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, SINF)) - g[i - 1].begin() - 1;
            long long tmp = lowTree.get(low) + calcCostRight(i - 1, g[i][j].first);
            f[i][j][0] = max(f[i][j][0], tmp);
            f[i][j][1] = max(f[i][j][1], tmp);

            int high = lower_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, 0)) - g[i - 1].begin();
            f[i][j][1] = max(f[i][j][1], highTree.get(high) - calcCostLeft(i, g[i][j].first));

            rs = max({rs, f[i][j][0], f[i][j][1]});
        }
    }
    return rs;
}

Compilation message

fish.cpp: In function 'long long int max_weights(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
fish.cpp:104:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  104 |         for (int j = 1; j < g[i].size(); j++)
      |                         ~~^~~~~~~~~~~~~
fish.cpp:114:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  114 |             for (int t = 0; t < g[i - 2].size(); t++) {
      |                             ~~^~~~~~~~~~~~~~~~~
fish.cpp:120:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  120 |         for (int t = 0; t < g[i - 1].size(); t++) {
      |                         ~~^~~~~~~~~~~~~~~~~
fish.cpp:124:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  124 |         for (int j = 0; j < g[i].size(); j++) {
      |                         ~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 199 ms 49708 KB Output is correct
2 Correct 215 ms 55680 KB Output is correct
3 Correct 123 ms 29220 KB Output is correct
4 Correct 130 ms 29244 KB Output is correct
5 Correct 442 ms 73464 KB Output is correct
6 Correct 455 ms 58460 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 301 ms 57328 KB Output is correct
3 Correct 331 ms 64972 KB Output is correct
4 Correct 184 ms 49704 KB Output is correct
5 Correct 210 ms 55580 KB Output is correct
6 Correct 6 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7252 KB Output is correct
10 Correct 129 ms 29352 KB Output is correct
11 Correct 119 ms 29272 KB Output is correct
12 Correct 210 ms 49776 KB Output is correct
13 Correct 248 ms 55688 KB Output is correct
14 Correct 202 ms 42588 KB Output is correct
15 Correct 239 ms 45932 KB Output is correct
16 Correct 210 ms 42584 KB Output is correct
17 Correct 216 ms 45864 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 124 ms 29276 KB Output is correct
2 Correct 125 ms 29268 KB Output is correct
3 Correct 151 ms 28476 KB Output is correct
4 Correct 142 ms 30216 KB Output is correct
5 Correct 188 ms 31724 KB Output is correct
6 Correct 167 ms 31720 KB Output is correct
7 Correct 163 ms 31728 KB Output is correct
8 Correct 161 ms 31724 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 7252 KB Output is correct
2 Correct 5 ms 7252 KB Output is correct
3 Correct 5 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 6 ms 7304 KB Output is correct
9 Correct 5 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 5 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 5 ms 7380 KB Output is correct
14 Correct 7 ms 7380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 7252 KB Output is correct
2 Correct 5 ms 7252 KB Output is correct
3 Correct 5 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 6 ms 7304 KB Output is correct
9 Correct 5 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 5 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 5 ms 7380 KB Output is correct
14 Correct 7 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 7 ms 7592 KB Output is correct
17 Correct 51 ms 11776 KB Output is correct
18 Correct 57 ms 11988 KB Output is correct
19 Correct 48 ms 11860 KB Output is correct
20 Correct 56 ms 11860 KB Output is correct
21 Correct 46 ms 11896 KB Output is correct
22 Correct 96 ms 16332 KB Output is correct
23 Correct 13 ms 8276 KB Output is correct
24 Correct 39 ms 10304 KB Output is correct
25 Correct 5 ms 7472 KB Output is correct
26 Correct 13 ms 8236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 7252 KB Output is correct
2 Correct 5 ms 7252 KB Output is correct
3 Correct 5 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 6 ms 7304 KB Output is correct
9 Correct 5 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 5 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 5 ms 7380 KB Output is correct
14 Correct 7 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 7 ms 7592 KB Output is correct
17 Correct 51 ms 11776 KB Output is correct
18 Correct 57 ms 11988 KB Output is correct
19 Correct 48 ms 11860 KB Output is correct
20 Correct 56 ms 11860 KB Output is correct
21 Correct 46 ms 11896 KB Output is correct
22 Correct 96 ms 16332 KB Output is correct
23 Correct 13 ms 8276 KB Output is correct
24 Correct 39 ms 10304 KB Output is correct
25 Correct 5 ms 7472 KB Output is correct
26 Correct 13 ms 8236 KB Output is correct
27 Correct 9 ms 8148 KB Output is correct
28 Correct 255 ms 29076 KB Output is correct
29 Correct 334 ms 37652 KB Output is correct
30 Correct 324 ms 36828 KB Output is correct
31 Correct 312 ms 36828 KB Output is correct
32 Correct 331 ms 37708 KB Output is correct
33 Correct 325 ms 36864 KB Output is correct
34 Correct 333 ms 36836 KB Output is correct
35 Correct 126 ms 19216 KB Output is correct
36 Correct 348 ms 37688 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 124 ms 29276 KB Output is correct
2 Correct 125 ms 29268 KB Output is correct
3 Correct 151 ms 28476 KB Output is correct
4 Correct 142 ms 30216 KB Output is correct
5 Correct 188 ms 31724 KB Output is correct
6 Correct 167 ms 31720 KB Output is correct
7 Correct 163 ms 31728 KB Output is correct
8 Correct 161 ms 31724 KB Output is correct
9 Correct 224 ms 38408 KB Output is correct
10 Correct 148 ms 24016 KB Output is correct
11 Correct 296 ms 40856 KB Output is correct
12 Correct 5 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 6 ms 7252 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 5 ms 7252 KB Output is correct
17 Correct 6 ms 7252 KB Output is correct
18 Correct 127 ms 29276 KB Output is correct
19 Correct 124 ms 29284 KB Output is correct
20 Correct 129 ms 29272 KB Output is correct
21 Correct 125 ms 29272 KB Output is correct
22 Correct 260 ms 38468 KB Output is correct
23 Correct 306 ms 48108 KB Output is correct
24 Correct 300 ms 48612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 199 ms 49708 KB Output is correct
2 Correct 215 ms 55680 KB Output is correct
3 Correct 123 ms 29220 KB Output is correct
4 Correct 130 ms 29244 KB Output is correct
5 Correct 442 ms 73464 KB Output is correct
6 Correct 455 ms 58460 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 301 ms 57328 KB Output is correct
9 Correct 331 ms 64972 KB Output is correct
10 Correct 184 ms 49704 KB Output is correct
11 Correct 210 ms 55580 KB Output is correct
12 Correct 6 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 4 ms 7252 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 129 ms 29352 KB Output is correct
17 Correct 119 ms 29272 KB Output is correct
18 Correct 210 ms 49776 KB Output is correct
19 Correct 248 ms 55688 KB Output is correct
20 Correct 202 ms 42588 KB Output is correct
21 Correct 239 ms 45932 KB Output is correct
22 Correct 210 ms 42584 KB Output is correct
23 Correct 216 ms 45864 KB Output is correct
24 Correct 124 ms 29276 KB Output is correct
25 Correct 125 ms 29268 KB Output is correct
26 Correct 151 ms 28476 KB Output is correct
27 Correct 142 ms 30216 KB Output is correct
28 Correct 188 ms 31724 KB Output is correct
29 Correct 167 ms 31720 KB Output is correct
30 Correct 163 ms 31728 KB Output is correct
31 Correct 161 ms 31724 KB Output is correct
32 Correct 5 ms 7252 KB Output is correct
33 Correct 5 ms 7252 KB Output is correct
34 Correct 5 ms 7252 KB Output is correct
35 Correct 4 ms 7252 KB Output is correct
36 Correct 4 ms 7252 KB Output is correct
37 Correct 4 ms 7252 KB Output is correct
38 Correct 4 ms 7252 KB Output is correct
39 Correct 6 ms 7304 KB Output is correct
40 Correct 5 ms 7380 KB Output is correct
41 Correct 5 ms 7636 KB Output is correct
42 Correct 5 ms 7380 KB Output is correct
43 Correct 5 ms 7508 KB Output is correct
44 Correct 5 ms 7380 KB Output is correct
45 Correct 7 ms 7380 KB Output is correct
46 Correct 4 ms 7380 KB Output is correct
47 Correct 7 ms 7592 KB Output is correct
48 Correct 51 ms 11776 KB Output is correct
49 Correct 57 ms 11988 KB Output is correct
50 Correct 48 ms 11860 KB Output is correct
51 Correct 56 ms 11860 KB Output is correct
52 Correct 46 ms 11896 KB Output is correct
53 Correct 96 ms 16332 KB Output is correct
54 Correct 13 ms 8276 KB Output is correct
55 Correct 39 ms 10304 KB Output is correct
56 Correct 5 ms 7472 KB Output is correct
57 Correct 13 ms 8236 KB Output is correct
58 Correct 9 ms 8148 KB Output is correct
59 Correct 255 ms 29076 KB Output is correct
60 Correct 334 ms 37652 KB Output is correct
61 Correct 324 ms 36828 KB Output is correct
62 Correct 312 ms 36828 KB Output is correct
63 Correct 331 ms 37708 KB Output is correct
64 Correct 325 ms 36864 KB Output is correct
65 Correct 333 ms 36836 KB Output is correct
66 Correct 126 ms 19216 KB Output is correct
67 Correct 348 ms 37688 KB Output is correct
68 Correct 224 ms 38408 KB Output is correct
69 Correct 148 ms 24016 KB Output is correct
70 Correct 296 ms 40856 KB Output is correct
71 Correct 5 ms 7252 KB Output is correct
72 Correct 4 ms 7252 KB Output is correct
73 Correct 6 ms 7252 KB Output is correct
74 Correct 4 ms 7252 KB Output is correct
75 Correct 5 ms 7252 KB Output is correct
76 Correct 6 ms 7252 KB Output is correct
77 Correct 127 ms 29276 KB Output is correct
78 Correct 124 ms 29284 KB Output is correct
79 Correct 129 ms 29272 KB Output is correct
80 Correct 125 ms 29272 KB Output is correct
81 Correct 260 ms 38468 KB Output is correct
82 Correct 306 ms 48108 KB Output is correct
83 Correct 300 ms 48612 KB Output is correct
84 Correct 451 ms 59632 KB Output is correct
85 Correct 464 ms 61788 KB Output is correct
86 Correct 403 ms 55620 KB Output is correct
87 Correct 424 ms 57984 KB Output is correct
88 Correct 5 ms 7252 KB Output is correct
89 Correct 424 ms 57988 KB Output is correct
90 Correct 440 ms 57180 KB Output is correct
91 Correct 421 ms 56948 KB Output is correct