Submission #627587

# Submission time Handle Problem Language Result Execution time Memory
627587 2022-08-12T17:22:02 Z dqhungdl Catfish Farm (IOI22_fish) C++17
67 / 100
426 ms 73584 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> ii;
const int MAX = 1e5 + 5;
const long long INF = 1e18;
bool markLow[MAX];
vector<ii> g[MAX];
vector<long long> S[MAX];
vector<vector<long long>> f[MAX];

struct FenwickTreeLow {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeLow(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i <= n; i += i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i > 0; i -= i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

struct FenwickTreeHigh {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeHigh(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i > 0; i -= i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i <= n; i += i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

//long long calcCost(int col, int L, int R) {
//    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
//    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
//    if (l <= r)
//        return S[col][r] - (l ? S[col][l - 1] : 0);
//    return 0;
//}

long long calcCostLeft(int col, int L) {
    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
    return l ? S[col][l - 1] : 0;
}

long long calcCostRight(int col, int R) {
    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, INF)) - g[col].begin() - 1;
    return r >= 0 ? S[col][r] : 0;
}

long long max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    for (int i = 0; i < M; i++) {
        g[X[i]].emplace_back(Y[i], W[i]);
        if (!Y[i])
            markLow[X[i]] = true;
    }
    for (int i = 0; i < N; i++) {
        if (!markLow[i])
            g[i].emplace_back(0, 0);
        g[i].emplace_back(N, 0);
    }
    for (int i = 0; i < N; i++) {
        sort(g[i].begin(), g[i].end());
        S[i].resize(g[i].size());
        S[i][0] = g[i][0].second;
        for (int j = 1; j < g[i].size(); j++)
            S[i][j] = S[i][j - 1] + g[i][j].second;
        f[i].resize(g[i].size(), vector<long long>(2));
    }
    FenwickTreeLow lowTree(N), lowJump(N);
    FenwickTreeHigh highTree(N), highJump(N);
    long long rs = 0;
    for (int i = 1; i < N; i++) {
        if (i > 1) {
            lowJump.reset(), highJump.reset();
            for (int t = 0; t < g[i - 2].size(); t++) {
                lowJump.update(t, f[i - 2][t][1]);
                highJump.update(t, f[i - 2][t][1] + calcCostRight(i - 1, g[i - 2][t].first));
            }
        }
        lowTree.reset(), highTree.reset();
        for (int t = 0; t < g[i - 1].size(); t++) {
            lowTree.update(t, f[i - 1][t][0] - calcCostLeft(i - 1, g[i - 1][t].first));
            highTree.update(t, f[i - 1][t][1] + calcCostRight(i, g[i - 1][t].first));
        }
        for (int j = 0; j < g[i].size(); j++) {
            if (i > 1) {
                int low = upper_bound(g[i - 2].begin(), g[i - 2].end(), ii(g[i][j].first, INF)) - g[i - 2].begin() - 1;
                long long tmp = lowJump.get(low) + calcCostRight(i - 1, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

                int high = low + 1;
                tmp = highJump.get(high);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

//                for (int t = 0; t < g[i - 2].size(); t++) {
//                    long long tmp = f[i - 2][t][1] + calcCost(i - 1, 0, max(g[i - 2][t].first, g[i][j].first));
//                    f[i][j][0] = max(f[i][j][0], tmp);
//                    f[i][j][1] = max(f[i][j][1], tmp);
//                }
            } else {
                long long tmp = calcCostRight(0, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);
            }

            int low = upper_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, INF)) - g[i - 1].begin() - 1;
            long long tmp = lowTree.get(low) + calcCostRight(i - 1, g[i][j].first);
            f[i][j][0] = max(f[i][j][0], tmp);
            f[i][j][1] = max(f[i][j][1], tmp);

            int high = lower_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, 0)) - g[i - 1].begin();
            f[i][j][1] = max(f[i][j][1], highTree.get(high) - calcCostLeft(i, g[i][j].first));

            rs = max({rs, f[i][j][0], f[i][j][1]});
//            for (int t = 0; t < g[i - 1].size(); t++) {
//                if (g[i - 1][t].first <= g[i][j].first) {
//                    f[i][j][0] = max(f[i][j][0], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                }
//                if (g[i - 1][t].first >= g[i][j].first)
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][1] + calcCost(i, g[i][j].first, g[i - 1][t].first));
//            }
        }
    }
    for (int j = 0; j < g[N - 2].size(); j++)
        rs = max(rs, f[N - 2][j][1] + calcCostRight(N - 1, g[N - 2][j].first));
    return rs;
}

//int main() {
//    freopen("../_input", "r", stdin);
//    int N, M;
//    assert(2 == scanf("%d %d", &N, &M));
//
//    std::vector<int> X(M), Y(M), W(M);
//    for (int i = 0; i < M; ++i) {
//        assert(3 == scanf("%d %d %d", &X[i], &Y[i], &W[i]));
//    }
//
//    long long result = max_weights(N, M, X, Y, W);
//    printf("%lld\n", result);
//    return 0;
//}

Compilation message

fish.cpp: In function 'long long int max_weights(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
fish.cpp:112:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  112 |         for (int j = 1; j < g[i].size(); j++)
      |                         ~~^~~~~~~~~~~~~
fish.cpp:122:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  122 |             for (int t = 0; t < g[i - 2].size(); t++) {
      |                             ~~^~~~~~~~~~~~~~~~~
fish.cpp:128:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  128 |         for (int t = 0; t < g[i - 1].size(); t++) {
      |                         ~~^~~~~~~~~~~~~~~~~
fish.cpp:132:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  132 |         for (int j = 0; j < g[i].size(); j++) {
      |                         ~~^~~~~~~~~~~~~
fish.cpp:174:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  174 |     for (int j = 0; j < g[N - 2].size(); j++)
      |                     ~~^~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 176 ms 49748 KB Output is correct
2 Correct 201 ms 55612 KB Output is correct
3 Correct 115 ms 29248 KB Output is correct
4 Correct 115 ms 29388 KB Output is correct
5 Correct 402 ms 73584 KB Output is correct
6 Correct 426 ms 58496 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 270 ms 57276 KB Output is correct
3 Correct 314 ms 65092 KB Output is correct
4 Correct 176 ms 49704 KB Output is correct
5 Correct 204 ms 55704 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7252 KB Output is correct
10 Correct 116 ms 29244 KB Output is correct
11 Correct 116 ms 29240 KB Output is correct
12 Correct 181 ms 49736 KB Output is correct
13 Correct 207 ms 55680 KB Output is correct
14 Correct 183 ms 42572 KB Output is correct
15 Correct 211 ms 46064 KB Output is correct
16 Correct 182 ms 42708 KB Output is correct
17 Correct 199 ms 45868 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 116 ms 29272 KB Output is correct
2 Correct 114 ms 29268 KB Output is correct
3 Correct 123 ms 28432 KB Output is correct
4 Correct 129 ms 30180 KB Output is correct
5 Correct 160 ms 31720 KB Output is correct
6 Correct 150 ms 31620 KB Output is correct
7 Correct 157 ms 31704 KB Output is correct
8 Correct 155 ms 31692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7352 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 3 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7396 KB Output is correct
10 Correct 7 ms 7576 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7352 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 3 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7396 KB Output is correct
10 Correct 7 ms 7576 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 5 ms 7508 KB Output is correct
17 Correct 47 ms 11732 KB Output is correct
18 Correct 46 ms 11988 KB Output is correct
19 Correct 42 ms 11808 KB Output is correct
20 Correct 42 ms 11788 KB Output is correct
21 Correct 41 ms 11860 KB Output is correct
22 Correct 85 ms 16356 KB Output is correct
23 Correct 12 ms 8280 KB Output is correct
24 Correct 32 ms 10196 KB Output is correct
25 Correct 5 ms 7508 KB Output is correct
26 Correct 12 ms 8236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7352 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 3 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7396 KB Output is correct
10 Correct 7 ms 7576 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 5 ms 7508 KB Output is correct
17 Correct 47 ms 11732 KB Output is correct
18 Correct 46 ms 11988 KB Output is correct
19 Correct 42 ms 11808 KB Output is correct
20 Correct 42 ms 11788 KB Output is correct
21 Correct 41 ms 11860 KB Output is correct
22 Correct 85 ms 16356 KB Output is correct
23 Correct 12 ms 8280 KB Output is correct
24 Correct 32 ms 10196 KB Output is correct
25 Correct 5 ms 7508 KB Output is correct
26 Correct 12 ms 8236 KB Output is correct
27 Correct 11 ms 8248 KB Output is correct
28 Correct 222 ms 29100 KB Output is correct
29 Correct 315 ms 37620 KB Output is correct
30 Correct 288 ms 36860 KB Output is correct
31 Correct 295 ms 36832 KB Output is correct
32 Incorrect 286 ms 37704 KB 1st lines differ - on the 1st token, expected: '99669450104468', found: '99667954366631'
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 116 ms 29272 KB Output is correct
2 Correct 114 ms 29268 KB Output is correct
3 Correct 123 ms 28432 KB Output is correct
4 Correct 129 ms 30180 KB Output is correct
5 Correct 160 ms 31720 KB Output is correct
6 Correct 150 ms 31620 KB Output is correct
7 Correct 157 ms 31704 KB Output is correct
8 Correct 155 ms 31692 KB Output is correct
9 Correct 206 ms 38472 KB Output is correct
10 Correct 121 ms 24020 KB Output is correct
11 Correct 248 ms 40780 KB Output is correct
12 Correct 4 ms 7352 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 5 ms 7352 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 4 ms 7252 KB Output is correct
17 Correct 4 ms 7252 KB Output is correct
18 Correct 116 ms 29276 KB Output is correct
19 Correct 119 ms 29276 KB Output is correct
20 Correct 117 ms 29272 KB Output is correct
21 Correct 117 ms 29216 KB Output is correct
22 Correct 240 ms 38600 KB Output is correct
23 Correct 293 ms 48228 KB Output is correct
24 Correct 297 ms 48620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 176 ms 49748 KB Output is correct
2 Correct 201 ms 55612 KB Output is correct
3 Correct 115 ms 29248 KB Output is correct
4 Correct 115 ms 29388 KB Output is correct
5 Correct 402 ms 73584 KB Output is correct
6 Correct 426 ms 58496 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 270 ms 57276 KB Output is correct
9 Correct 314 ms 65092 KB Output is correct
10 Correct 176 ms 49704 KB Output is correct
11 Correct 204 ms 55704 KB Output is correct
12 Correct 4 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 4 ms 7252 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 116 ms 29244 KB Output is correct
17 Correct 116 ms 29240 KB Output is correct
18 Correct 181 ms 49736 KB Output is correct
19 Correct 207 ms 55680 KB Output is correct
20 Correct 183 ms 42572 KB Output is correct
21 Correct 211 ms 46064 KB Output is correct
22 Correct 182 ms 42708 KB Output is correct
23 Correct 199 ms 45868 KB Output is correct
24 Correct 116 ms 29272 KB Output is correct
25 Correct 114 ms 29268 KB Output is correct
26 Correct 123 ms 28432 KB Output is correct
27 Correct 129 ms 30180 KB Output is correct
28 Correct 160 ms 31720 KB Output is correct
29 Correct 150 ms 31620 KB Output is correct
30 Correct 157 ms 31704 KB Output is correct
31 Correct 155 ms 31692 KB Output is correct
32 Correct 4 ms 7252 KB Output is correct
33 Correct 4 ms 7252 KB Output is correct
34 Correct 4 ms 7352 KB Output is correct
35 Correct 4 ms 7252 KB Output is correct
36 Correct 3 ms 7252 KB Output is correct
37 Correct 4 ms 7252 KB Output is correct
38 Correct 4 ms 7252 KB Output is correct
39 Correct 4 ms 7252 KB Output is correct
40 Correct 4 ms 7396 KB Output is correct
41 Correct 7 ms 7576 KB Output is correct
42 Correct 4 ms 7380 KB Output is correct
43 Correct 5 ms 7508 KB Output is correct
44 Correct 4 ms 7380 KB Output is correct
45 Correct 5 ms 7380 KB Output is correct
46 Correct 4 ms 7380 KB Output is correct
47 Correct 5 ms 7508 KB Output is correct
48 Correct 47 ms 11732 KB Output is correct
49 Correct 46 ms 11988 KB Output is correct
50 Correct 42 ms 11808 KB Output is correct
51 Correct 42 ms 11788 KB Output is correct
52 Correct 41 ms 11860 KB Output is correct
53 Correct 85 ms 16356 KB Output is correct
54 Correct 12 ms 8280 KB Output is correct
55 Correct 32 ms 10196 KB Output is correct
56 Correct 5 ms 7508 KB Output is correct
57 Correct 12 ms 8236 KB Output is correct
58 Correct 11 ms 8248 KB Output is correct
59 Correct 222 ms 29100 KB Output is correct
60 Correct 315 ms 37620 KB Output is correct
61 Correct 288 ms 36860 KB Output is correct
62 Correct 295 ms 36832 KB Output is correct
63 Incorrect 286 ms 37704 KB 1st lines differ - on the 1st token, expected: '99669450104468', found: '99667954366631'
64 Halted 0 ms 0 KB -