Submission #627570

# Submission time Handle Problem Language Result Execution time Memory
627570 2022-08-12T17:00:50 Z dqhungdl Catfish Farm (IOI22_fish) C++17
67 / 100
431 ms 73484 KB
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;

typedef pair<int, int> ii;
const int MAX = 1e5 + 5;
const long long INF = 1e18;
bool markLow[MAX];
vector<ii> g[MAX];
vector<long long> S[MAX];
vector<vector<long long>> f[MAX];

struct FenwickTreeLow {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeLow(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i <= n; i += i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i > 0; i -= i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

struct FenwickTreeHigh {
    int n;
    vector<int> buffer;
    vector<long long> tree;

    FenwickTreeHigh(int _n) {
        n = _n;
        tree.resize(n + 5, -INF);
    }

    void update(int idx, long long val) {
        idx++;
        for (int i = idx; i > 0; i -= i & -i) {
            buffer.push_back(i);
            tree[i] = max(tree[i], val);
        }
    }

    long long get(int idx) {
        idx++;
        long long rs = 0;
        for (int i = idx; i <= n; i += i & -i)
            rs = max(rs, tree[i]);
        return rs;
    }

    void reset() {
        for (int id: buffer)
            tree[id] = -INF;
        buffer.clear();
    }
};

long long calcCost(int col, int L, int R) {
    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
    if (l <= r)
        return S[col][r] - (l ? S[col][l - 1] : 0);
    return 0;
}

long long calcCostLeft(int col, int L) {
    int l = lower_bound(g[col].begin(), g[col].end(), ii(L, 0)) - g[col].begin();
    return l ? S[col][l - 1] : 0;
}

long long calcCostRight(int col, int R) {
    int r = upper_bound(g[col].begin(), g[col].end(), ii(R, 0)) - g[col].begin() - 1;
    return r >= 0 ? S[col][r] : 0;
}

long long max_weights(int N, int M, vector<int> X, vector<int> Y, vector<int> W) {
    for (int i = 0; i < M; i++) {
        g[X[i]].emplace_back(Y[i], W[i]);
        if (!Y[i])
            markLow[X[i]] = true;
    }
    for (int i = 0; i < N; i++) {
        if (!markLow[i])
            g[i].emplace_back(0, 0);
        g[i].emplace_back(N, 0);
    }
    g[N] = {{0, 0}};
    for (int i = 0; i <= N; i++) {
        sort(g[i].begin(), g[i].end());
        S[i].resize(g[i].size());
        S[i][0] = g[i][0].second;
        for (int j = 1; j < g[i].size(); j++)
            S[i][j] = S[i][j - 1] + g[i][j].second;
        f[i].resize(g[i].size(), vector<long long>(2));
    }
    FenwickTreeLow lowTree(N), lowJump(N);
    FenwickTreeHigh highTree(N), highJump(N);
    long long rs = 0;
    for (int i = 1; i <= N; i++) {
        if (i > 1) {
            lowJump.reset(), highJump.reset();
            for (int t = 0; t < g[i - 2].size(); t++) {
                lowJump.update(t, f[i - 2][t][1]);
                highJump.update(t, f[i - 2][t][1] + calcCostRight(i - 1, g[i - 2][t].first));
            }
        }
        lowTree.reset(), highTree.reset();
        for (int t = 0; t < g[i - 1].size(); t++) {
            lowTree.update(t, f[i - 1][t][0] - calcCostLeft(i - 1, g[i - 1][t].first));
            highTree.update(t, f[i - 1][t][1] + calcCostRight(i, g[i - 1][t].first));
        }
        for (int j = 0; j < g[i].size(); j++) {
            if (i > 1) {
                int low = upper_bound(g[i - 2].begin(), g[i - 2].end(), ii(g[i][j].first, 0)) - g[i - 2].begin() - 1;
                long long tmp = lowJump.get(low) + calcCostRight(i - 1, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

                int high = low + 1;
                tmp = highJump.get(high);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);

//                for (int t = 0; t < g[i - 2].size(); t++) {
//                    long long tmp = f[i - 2][t][1] + calcCost(i - 1, 0, max(g[i - 2][t].first, g[i][j].first));
//                    f[i][j][0] = max(f[i][j][0], tmp);
//                    f[i][j][1] = max(f[i][j][1], tmp);
//                }
            } else {
                long long tmp = calcCost(0, 0, g[i][j].first);
                f[i][j][0] = max(f[i][j][0], tmp);
                f[i][j][1] = max(f[i][j][1], tmp);
            }

            int low = upper_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, 0)) - g[i - 1].begin() - 1;
            long long tmp = lowTree.get(low) + calcCostRight(i - 1, g[i][j].first);
            f[i][j][0] = max(f[i][j][0], tmp);
            f[i][j][1] = max(f[i][j][1], tmp);

            int high = lower_bound(g[i - 1].begin(), g[i - 1].end(), ii(g[i][j].first, 0)) - g[i - 1].begin();
            f[i][j][1] = max(f[i][j][1], highTree.get(high) - calcCostLeft(i, g[i][j].first));

            rs = max({rs, f[i][j][0], f[i][j][1]});
//            for (int t = 0; t < g[i - 1].size(); t++) {
//                if (g[i - 1][t].first <= g[i][j].first) {
//                    f[i][j][0] = max(f[i][j][0], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][0] + calcCost(i - 1, g[i - 1][t].first, g[i][j].first));
//                }
//                if (g[i - 1][t].first >= g[i][j].first)
//                    f[i][j][1] = max(f[i][j][1], f[i - 1][t][1] + calcCost(i, g[i][j].first, g[i - 1][t].first));
//            }
        }
    }
    return rs;
}

//int main() {
//    freopen("../_input", "r", stdin);
//    int N, M;
//    assert(2 == scanf("%d %d", &N, &M));
//
//    std::vector<int> X(M), Y(M), W(M);
//    for (int i = 0; i < M; ++i) {
//        assert(3 == scanf("%d %d %d", &X[i], &Y[i], &W[i]));
//    }
//
//    long long result = max_weights(N, M, X, Y, W);
//    printf("%lld\n", result);
//    return 0;
//}

Compilation message

fish.cpp: In function 'long long int max_weights(int, int, std::vector<int>, std::vector<int>, std::vector<int>)':
fish.cpp:113:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  113 |         for (int j = 1; j < g[i].size(); j++)
      |                         ~~^~~~~~~~~~~~~
fish.cpp:123:31: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  123 |             for (int t = 0; t < g[i - 2].size(); t++) {
      |                             ~~^~~~~~~~~~~~~~~~~
fish.cpp:129:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  129 |         for (int t = 0; t < g[i - 1].size(); t++) {
      |                         ~~^~~~~~~~~~~~~~~~~
fish.cpp:133:27: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  133 |         for (int j = 0; j < g[i].size(); j++) {
      |                         ~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 184 ms 49704 KB Output is correct
2 Correct 201 ms 55724 KB Output is correct
3 Correct 120 ms 29272 KB Output is correct
4 Correct 118 ms 29168 KB Output is correct
5 Correct 400 ms 73484 KB Output is correct
6 Correct 431 ms 58364 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7252 KB Output is correct
2 Correct 274 ms 57380 KB Output is correct
3 Correct 315 ms 65188 KB Output is correct
4 Correct 176 ms 49680 KB Output is correct
5 Correct 199 ms 55688 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7300 KB Output is correct
9 Correct 4 ms 7248 KB Output is correct
10 Correct 115 ms 29268 KB Output is correct
11 Correct 115 ms 29168 KB Output is correct
12 Correct 202 ms 49768 KB Output is correct
13 Correct 207 ms 55600 KB Output is correct
14 Correct 181 ms 42572 KB Output is correct
15 Correct 203 ms 45916 KB Output is correct
16 Correct 207 ms 42588 KB Output is correct
17 Correct 203 ms 45884 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 117 ms 29276 KB Output is correct
2 Correct 119 ms 29200 KB Output is correct
3 Correct 129 ms 28492 KB Output is correct
4 Correct 137 ms 30212 KB Output is correct
5 Correct 163 ms 31800 KB Output is correct
6 Correct 149 ms 31712 KB Output is correct
7 Correct 156 ms 31688 KB Output is correct
8 Correct 153 ms 31696 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7340 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7340 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 6 ms 7508 KB Output is correct
17 Correct 47 ms 11744 KB Output is correct
18 Correct 46 ms 11988 KB Output is correct
19 Correct 47 ms 11860 KB Output is correct
20 Correct 42 ms 11856 KB Output is correct
21 Correct 44 ms 11892 KB Output is correct
22 Correct 86 ms 16352 KB Output is correct
23 Correct 12 ms 8276 KB Output is correct
24 Correct 32 ms 10260 KB Output is correct
25 Correct 5 ms 7508 KB Output is correct
26 Correct 11 ms 8148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 7340 KB Output is correct
2 Correct 4 ms 7252 KB Output is correct
3 Correct 4 ms 7252 KB Output is correct
4 Correct 4 ms 7252 KB Output is correct
5 Correct 4 ms 7252 KB Output is correct
6 Correct 4 ms 7252 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 4 ms 7252 KB Output is correct
9 Correct 4 ms 7380 KB Output is correct
10 Correct 5 ms 7636 KB Output is correct
11 Correct 4 ms 7380 KB Output is correct
12 Correct 5 ms 7508 KB Output is correct
13 Correct 4 ms 7380 KB Output is correct
14 Correct 5 ms 7380 KB Output is correct
15 Correct 4 ms 7380 KB Output is correct
16 Correct 6 ms 7508 KB Output is correct
17 Correct 47 ms 11744 KB Output is correct
18 Correct 46 ms 11988 KB Output is correct
19 Correct 47 ms 11860 KB Output is correct
20 Correct 42 ms 11856 KB Output is correct
21 Correct 44 ms 11892 KB Output is correct
22 Correct 86 ms 16352 KB Output is correct
23 Correct 12 ms 8276 KB Output is correct
24 Correct 32 ms 10260 KB Output is correct
25 Correct 5 ms 7508 KB Output is correct
26 Correct 11 ms 8148 KB Output is correct
27 Correct 9 ms 8276 KB Output is correct
28 Correct 217 ms 28964 KB Output is correct
29 Correct 313 ms 37648 KB Output is correct
30 Correct 284 ms 36812 KB Output is correct
31 Correct 289 ms 36720 KB Output is correct
32 Incorrect 289 ms 37612 KB 1st lines differ - on the 1st token, expected: '99669450104468', found: '99666556921962'
33 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 117 ms 29276 KB Output is correct
2 Correct 119 ms 29200 KB Output is correct
3 Correct 129 ms 28492 KB Output is correct
4 Correct 137 ms 30212 KB Output is correct
5 Correct 163 ms 31800 KB Output is correct
6 Correct 149 ms 31712 KB Output is correct
7 Correct 156 ms 31688 KB Output is correct
8 Correct 153 ms 31696 KB Output is correct
9 Correct 204 ms 38328 KB Output is correct
10 Correct 119 ms 23992 KB Output is correct
11 Correct 250 ms 40852 KB Output is correct
12 Correct 4 ms 7252 KB Output is correct
13 Correct 3 ms 7252 KB Output is correct
14 Correct 4 ms 7252 KB Output is correct
15 Correct 4 ms 7252 KB Output is correct
16 Correct 4 ms 7356 KB Output is correct
17 Correct 4 ms 7256 KB Output is correct
18 Correct 115 ms 29276 KB Output is correct
19 Correct 126 ms 29156 KB Output is correct
20 Correct 127 ms 29256 KB Output is correct
21 Correct 115 ms 29276 KB Output is correct
22 Correct 222 ms 38468 KB Output is correct
23 Correct 303 ms 48204 KB Output is correct
24 Correct 295 ms 48488 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 184 ms 49704 KB Output is correct
2 Correct 201 ms 55724 KB Output is correct
3 Correct 120 ms 29272 KB Output is correct
4 Correct 118 ms 29168 KB Output is correct
5 Correct 400 ms 73484 KB Output is correct
6 Correct 431 ms 58364 KB Output is correct
7 Correct 4 ms 7252 KB Output is correct
8 Correct 274 ms 57380 KB Output is correct
9 Correct 315 ms 65188 KB Output is correct
10 Correct 176 ms 49680 KB Output is correct
11 Correct 199 ms 55688 KB Output is correct
12 Correct 4 ms 7252 KB Output is correct
13 Correct 4 ms 7252 KB Output is correct
14 Correct 4 ms 7300 KB Output is correct
15 Correct 4 ms 7248 KB Output is correct
16 Correct 115 ms 29268 KB Output is correct
17 Correct 115 ms 29168 KB Output is correct
18 Correct 202 ms 49768 KB Output is correct
19 Correct 207 ms 55600 KB Output is correct
20 Correct 181 ms 42572 KB Output is correct
21 Correct 203 ms 45916 KB Output is correct
22 Correct 207 ms 42588 KB Output is correct
23 Correct 203 ms 45884 KB Output is correct
24 Correct 117 ms 29276 KB Output is correct
25 Correct 119 ms 29200 KB Output is correct
26 Correct 129 ms 28492 KB Output is correct
27 Correct 137 ms 30212 KB Output is correct
28 Correct 163 ms 31800 KB Output is correct
29 Correct 149 ms 31712 KB Output is correct
30 Correct 156 ms 31688 KB Output is correct
31 Correct 153 ms 31696 KB Output is correct
32 Correct 4 ms 7340 KB Output is correct
33 Correct 4 ms 7252 KB Output is correct
34 Correct 4 ms 7252 KB Output is correct
35 Correct 4 ms 7252 KB Output is correct
36 Correct 4 ms 7252 KB Output is correct
37 Correct 4 ms 7252 KB Output is correct
38 Correct 4 ms 7252 KB Output is correct
39 Correct 4 ms 7252 KB Output is correct
40 Correct 4 ms 7380 KB Output is correct
41 Correct 5 ms 7636 KB Output is correct
42 Correct 4 ms 7380 KB Output is correct
43 Correct 5 ms 7508 KB Output is correct
44 Correct 4 ms 7380 KB Output is correct
45 Correct 5 ms 7380 KB Output is correct
46 Correct 4 ms 7380 KB Output is correct
47 Correct 6 ms 7508 KB Output is correct
48 Correct 47 ms 11744 KB Output is correct
49 Correct 46 ms 11988 KB Output is correct
50 Correct 47 ms 11860 KB Output is correct
51 Correct 42 ms 11856 KB Output is correct
52 Correct 44 ms 11892 KB Output is correct
53 Correct 86 ms 16352 KB Output is correct
54 Correct 12 ms 8276 KB Output is correct
55 Correct 32 ms 10260 KB Output is correct
56 Correct 5 ms 7508 KB Output is correct
57 Correct 11 ms 8148 KB Output is correct
58 Correct 9 ms 8276 KB Output is correct
59 Correct 217 ms 28964 KB Output is correct
60 Correct 313 ms 37648 KB Output is correct
61 Correct 284 ms 36812 KB Output is correct
62 Correct 289 ms 36720 KB Output is correct
63 Incorrect 289 ms 37612 KB 1st lines differ - on the 1st token, expected: '99669450104468', found: '99666556921962'
64 Halted 0 ms 0 KB -