This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <array>
#include <algorithm>
#include <numeric>
#include <map>
#include <unordered_map>
#include <set>
#include <cstring>
#include <cmath>
#include <iomanip>
#include <cassert>
#include <random>
#include <cstdlib>
#define debug(x) std::cout << #x << " " << (x) << '\n';
#define pb push_back
#define mp std::make_pair
#define remax(a, b) a = std::max((a), (b));
#define remin(a, b) a = std::min((a), (b));
#define maxWeights max_weights
int64_t solveSmallN(int32_t n, int32_t m, std::vector<int32_t> x, std::vector<int32_t> y,
std::vector<int32_t> w) {
const int32_t MAX_N = 300;
std::array<std::array<int64_t, MAX_N>, MAX_N> wPrefSums;
std::array<std::array<std::array<int64_t, 3>, MAX_N + 5>, MAX_N + 5> dp;
auto getWRangeSum = [&wPrefSums](int32_t startRow, int32_t endRow, int32_t column) -> int64_t {
if(endRow <= startRow) {
return (int64_t) 0;
}
return wPrefSums[endRow - 1][column] - (startRow == 0 ? 0 : wPrefSums[startRow - 1][column]);
};
for(int32_t i = 0; i < m; i++) {
wPrefSums[y[i]][x[i]] = (int64_t) w[i];
}
for(int32_t j = 0; j < n; j++) {
for(int32_t i = 1; i < n; i++) {
wPrefSums[i][j] += wPrefSums[i - 1][j];
}
}
for(int32_t j = 1; j < n; j++) {
for(int32_t lastK = 0; lastK <= n; lastK++) {
for(int32_t k = 0; k <= n; k++) {
if(k == 0) {
remax(dp[j + 1][lastK][2], dp[j][lastK][0] + getWRangeSum(0, lastK, j));
remax(dp[j + 1][lastK][2], dp[j][lastK][1] + getWRangeSum(0, lastK, j));
}
if(lastK <= k) {
remax(dp[j + 1][k][0], dp[j][lastK][0] + getWRangeSum(lastK, k, j - 1));
remax(dp[j + 1][k][0], dp[j][lastK][2] + getWRangeSum(lastK, k, j - 1));
}
if(lastK >= k) {
remax(dp[j + 1][k][1], dp[j][lastK][1] + getWRangeSum(k, lastK, j));
remax(dp[j + 1][k][1], dp[j][lastK][0] + getWRangeSum(k, lastK, j));
remax(dp[j + 1][k][0], dp[j][lastK][2]);
}
}
}
}
int64_t ans = 0;
for(int32_t k = 0; k <= n; k++) {
remax(ans, dp[n][k][0]);
remax(ans, dp[n][k][1]);
remax(ans, dp[n][k][2]);
}
return ans;
}
int64_t solveEvenXs(int32_t n, int32_t m, std::vector<int32_t> x, std::vector<int32_t> y,
std::vector<int32_t> w) {
int64_t ans = 0;
for(int32_t i = 0; i < m; i++) {
ans += (int64_t) w[i];
}
return ans;
}
int64_t maxWeights(int32_t n, int32_t m, std::vector<int32_t> x, std::vector<int32_t> y,
std::vector<int32_t> w) {
if(n <= 300) {
return solveSmallN(n, m, x, y, w);
}
else if(std::all_of(x.begin(), x.end(), [](int32_t v) { return !(v & 1); })) {
return solveEvenXs(n, m, x, y, w);
}
}
Compilation message (stderr)
fish.cpp: In function 'int64_t max_weights(int32_t, int32_t, std::vector<int>, std::vector<int>, std::vector<int>)':
fish.cpp:99:1: warning: control reaches end of non-void function [-Wreturn-type]
99 | }
| ^
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |