Submission #626090

# Submission time Handle Problem Language Result Execution time Memory
626090 2022-08-11T08:13:33 Z I_love_Hoang_Yen Catfish Farm (IOI22_fish) C++17
18 / 100
758 ms 2097152 KB
#include "bits/stdc++.h"
using namespace std;

#define int long long
#define i_1 jakcjacjl
struct Fish {
    int col, row;
    int weight;
};
bool operator < (const Fish& a, const Fish& b) {
    if (a.col != b.col) return a.col < b.col;
    return a.row < b.row;
}

void upMax(int& f, int val) {
    if (val > f) f = val;
}

// sub1 - 3 {{{
// fishes are on even columns -> build piers on odd columns
// & catch all fishes
int sub1(const std::vector<Fish>& fishes) {
    int res = 0;
    for (const auto& fish : fishes) {
        res += fish.weight;
    }
    return res;
}

// fishes are on first 2 columns
int sub2(int n, const std::vector<Fish>& fishes) {
    std::vector<int> zeroes(n);  // prefix sum of fish weights at column == 0
    std::vector<int> ones(n);    // prefix sum of fish weights at column == 1
    for (const auto& fish : fishes) {
        if (fish.col == 0) zeroes[fish.row] += fish.weight;
        if (fish.col == 1) ones[fish.row] += fish.weight;
    }

    std::partial_sum(zeroes.begin(), zeroes.end(), zeroes.begin());
    std::partial_sum(ones.begin(), ones.end(), ones.begin());

    int res = ones.back();  // init: only catch fishes at column == 1
    for (int i = 0; i < n; ++i) {
        // build pier until at column 1, row 0-i
        if (n == 2) upMax(res, zeroes[i]);
        else upMax(res, zeroes[i] + ones.back() - ones[i]);
    }
    return res;
}

// all fishes are on row == 0
int sub3(int n, const std::vector<Fish>& fishes) {
    std::vector<int> weights(n);  // weights[i] = weight of fish at column i
    for (const auto& fish : fishes) {
        weights[fish.col] += fish.weight;
    }

    // f[i] = best strategy if we BUILD PIER AT i, only considering col 0..i
    // i-4 i-3 i-2 i-1 i
    std::vector<int> f(n);
    f[0] = 0;
    for (int i = 1; i < n; ++i) {
        f[i] = std::max(f[i-1], weights[i-1]);
        if (i >= 2) {
            upMax(f[i], f[i-2] + weights[i-1]);
        }
        if (i >= 3) {
            upMax(f[i], f[i-3] + weights[i-2] + weights[i-1]);
        }
    }

    int res = 0;
    for (int i = 0; i < n; ++i) {
        int cur = f[i];
        if (i + 1 < n) cur += weights[i+1];
        upMax(res, cur);
    }
    return res;
}
// }}}

// sub 5 N <= 300 {{{
int sub5(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0));
    // f <= g
    for (int c = 1; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            // this is first pier
            f[c][r] = g[c][r] = weights[c-1][r];

            // last pier at column i-1
            for (int lastRow = 0; lastRow < n; ++lastRow) {
                if (lastRow <= r) {
                    int cur = std::max(
                            f[c-1][lastRow] + weights[c-1][r] - weights[c-1][lastRow],
                            g[c-1][lastRow]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                } else {
                    upMax(f[c][r], g[c-1][lastRow]);
                    upMax(g[c][r], g[c-1][lastRow] + weights[c][lastRow] - weights[c][r]);
                }
            }

            // last pier at column i-2
            if (c >= 2) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-2][lastRow] + weights[c-1][std::max(lastRow, r)];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
            
            // last pier at column i-3
            if (c >= 3) {
                for (int lastRow = 0; lastRow < n; ++lastRow) {
                    int cur = g[c-3][lastRow] + weights[c-2][lastRow] + weights[c-1][r];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
        }
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;
}
// }}}

// SegTree, copied from AtCoder library {{{
// AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html
//
// Notes:
// - Index of elements from 0 -> n-1
// - Range queries are [l, r-1]
//
// Tested:
// - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j
// - https://oj.vnoi.info/problem/gss
// - https://oj.vnoi.info/problem/nklineup
// - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr
// - https://judge.yosupo.jp/problem/point_add_range_sum
// - https://judge.yosupo.jp/problem/point_set_range_composite
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

template<
    class T,  // data type for nodes
    T (*op) (T, T),  // operator to combine 2 nodes
    T (*e)() // identity element
>
struct SegTree {
    SegTree() : SegTree(0) {}
    explicit SegTree(int n) : SegTree(vector<T> (n, e())) {}
    explicit SegTree(const vector<T>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1<<log;
        d = vector<T> (2*size, e());

        for (int i = 0; i < _n; i++) d[size+i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    // 0 <= p < n
    void set(int p, T x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // 0 <= p < n
    T get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    T prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        T sml = e(), smr = e();
        l += size;
        r += size;
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    T all_prod() const {
        return d[1];
    }

    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*f)(T)> int max_right(int l) const {
        return max_right(l, [](T x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        T sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*f)(T)> int min_left(int r) const {
        return min_left(r, [](T x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        T sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

private:
    int _n, size, log;
    vector<T> d;

    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
};
// }}}

struct MaxSegTreeOp {
    static int op(int x, int y) {
        return max(x, y);
    }
    static int e() {
        return 0;
    }
};

// RMQ {{{
//
// Sparse table
// Usage:
// RMQ<int, _min> st(v);
//
// Note:
// - doesn't work for empty range
//
// Tested:
// - https://judge.yosupo.jp/problem/staticrmq
template<class T, T (*op) (T, T)> struct RMQ {
    RMQ() = default;
    RMQ(const vector<T>& v) : t{v}, n{(int) v.size()} {
        for (int k = 1; (1<<k) <= n; ++k) {
            t.emplace_back(n - (1<<k) + 1);
            for (int i = 0; i + (1<<k) <= n; ++i) {
                t[k][i] = op(t[k-1][i], t[k-1][i + (1<<(k-1))]);
            }
        }
    }

    // get range [l, r-1]
    // doesn't work for empty range
    T get(int l, int r) const {
        assert(0 <= l && l < r && r <= n);
        int k = __lg(r - l);
        return op(t[k][l], t[k][r - (1<<k)]);
    }

private:
    vector<vector<T>> t;
    int n;
};
template<class T> T _min(T a, T b) { return b < a ? b : a; }
template<class T> T _max(T a, T b) { return a < b ? b : a; }
// }}}

// N <= 3000 {{{
int sub6(int n, const std::vector<Fish>& fishes) {
    // Init weights[i][j] = sum of fish on column i, from row 0 -> row j
    std::vector<std::vector<int>> weights(n, std::vector<int> (n, 0));
    for (const auto& fish : fishes) {
        weights[fish.col][fish.row] += fish.weight;
    }
    for (int col = 0; col < n; ++col) {
        std::partial_sum(weights[col].begin(), weights[col].end(), weights[col].begin());
    }

    // f[c][r] = best strategy if we last BUILD PIER AT column c, row r
    //           only considering fishes <= (c, r)
    // g[c][r] = similar to f[c][r] but consider fishes at column c, in row [r, n-1]
    std::vector<std::vector<int>> f(n, std::vector<int> (n, 0)),
                                  g(n, std::vector<int> (n, 0)),
                                  f_with_next_col_prefix_max(n, std::vector<int> (n, 0));
    std::vector<int> g_with_next_col_prefix_max(n, 0);
    std::vector<RMQ<int, _max>> st_g(n), st_g_with_next_col(n);

    // f <= g
    for (int c = 0; c < n; ++c) {
        // compute {{{
        if (c > 0) {
            for (int r = 0; r < n; ++r) {
                // this is first pier
                f[c][r] = g[c][r] = weights[c-1][r];

                // last pier at column i-1
                if (c >= 1) {
                    // last row <= r
                    int cur = std::max(
                            st_g[c-1].get(0, r),
                            f_with_next_col_prefix_max[c-1][r] + weights[c-1][r]);
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);

                    // last row > r
                    if (r + 1 < n) {
                        upMax(f[c][r], st_g[c-1].get(r+1, n-1));
                        upMax(g[c][r], st_g_with_next_col[c-1].get(r+1, n-1) - weights[c][r]);
                    }
                }
                // last pier at column i-2
                if (c >= 2) {
                    int cur = std::max(
                            st_g[c-2].get(0, n-1) + weights[c-1][r],
                            st_g_with_next_col[c-2].get(0, n-1));
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
                // last pier at column i-3
                if (c >= 3) {
                    int cur = st_g_with_next_col[c-3].get(0, n-1) + weights[c-1][r];
                    upMax(f[c][r], cur);
                    upMax(g[c][r], cur);
                }
            }
        }
        // }}}
        
        // aggregate {{{
        st_g[c] = RMQ<int, _max> (g[c]);

        auto MAX = [] (auto a, auto b) { return std::max(a, b); };
        if (c + 1 < n) {
            // g_with_next_col[c][r] = g[c][r] + weights[c+1][r]
            std::vector<int> g_with_next_col(n);
            for (int r = 0; r < n; ++r) {
                g_with_next_col[r] = g[c][r] + weights[c+1][r];
            }
            st_g_with_next_col[c] = RMQ<int, _max> (g_with_next_col);

            for (int r = 0; r < n; ++r) {
                f_with_next_col_prefix_max[c][r] = f[c][r] - weights[c][r];
            }
            std::partial_sum(
                    f_with_next_col_prefix_max[c].begin(),
                    f_with_next_col_prefix_max[c].end(),
                    f_with_next_col_prefix_max[c].begin(),
                    MAX);
        }
        // }}}
    }

    int res = 0;
    for (int c = 0; c < n; ++c) {
        for (int r = 0; r < n; ++r) {
            assert(g[c][r] >= f[c][r]);
            int cur = g[c][r];
            if (c + 1 < n) {
                cur += weights[c+1][r];
            }
            upMax(res, cur);
        }
    }
    return res;

}
// }}}

#undef int
long long max_weights(
        int n, int nFish,
        std::vector<int> xs,
        std::vector<int> ys,
        std::vector<int> ws) {
    std::vector<Fish> fishes;
    for (int i = 0; i < nFish; ++i) {
        fishes.push_back({xs[i], ys[i], ws[i]});
    }

    if (std::all_of(xs.begin(), xs.end(), [] (int x) { return x % 2 == 0; })) {
        return sub1(fishes);
    }
    if (*std::max_element(xs.begin(), xs.end()) <= 1) {
        return sub2(n, fishes);
    }
    if (*std::max_element(ys.begin(), ys.end()) == 0) {
        return sub3(n, fishes);
    }
    return sub6(n, fishes);
}
# Verdict Execution time Memory Grader output
1 Correct 25 ms 5804 KB Output is correct
2 Correct 29 ms 6264 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 96 ms 20396 KB Output is correct
6 Correct 100 ms 20400 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 55 ms 10844 KB Output is correct
3 Correct 66 ms 11940 KB Output is correct
4 Correct 25 ms 5716 KB Output is correct
5 Correct 31 ms 6440 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 296 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 1 ms 296 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 26 ms 5692 KB Output is correct
13 Correct 32 ms 6972 KB Output is correct
14 Correct 31 ms 5720 KB Output is correct
15 Correct 30 ms 6456 KB Output is correct
16 Correct 26 ms 5792 KB Output is correct
17 Correct 29 ms 6396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 1876 KB Output is correct
3 Correct 18 ms 4868 KB Output is correct
4 Correct 12 ms 3928 KB Output is correct
5 Correct 34 ms 6600 KB Output is correct
6 Correct 33 ms 7104 KB Output is correct
7 Correct 31 ms 7292 KB Output is correct
8 Correct 29 ms 7272 KB Output is correct
# Verdict Execution time Memory Grader output
1 Runtime error 1 ms 340 KB Execution killed with signal 6
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Runtime error 1 ms 340 KB Execution killed with signal 6
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Runtime error 1 ms 340 KB Execution killed with signal 6
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 1876 KB Output is correct
3 Correct 18 ms 4868 KB Output is correct
4 Correct 12 ms 3928 KB Output is correct
5 Correct 34 ms 6600 KB Output is correct
6 Correct 33 ms 7104 KB Output is correct
7 Correct 31 ms 7292 KB Output is correct
8 Correct 29 ms 7272 KB Output is correct
9 Runtime error 758 ms 2097152 KB Execution killed with signal 9
10 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 25 ms 5804 KB Output is correct
2 Correct 29 ms 6264 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 96 ms 20396 KB Output is correct
6 Correct 100 ms 20400 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 55 ms 10844 KB Output is correct
9 Correct 66 ms 11940 KB Output is correct
10 Correct 25 ms 5716 KB Output is correct
11 Correct 31 ms 6440 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 296 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 296 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 26 ms 5692 KB Output is correct
19 Correct 32 ms 6972 KB Output is correct
20 Correct 31 ms 5720 KB Output is correct
21 Correct 30 ms 6456 KB Output is correct
22 Correct 26 ms 5792 KB Output is correct
23 Correct 29 ms 6396 KB Output is correct
24 Correct 0 ms 212 KB Output is correct
25 Correct 1 ms 1876 KB Output is correct
26 Correct 18 ms 4868 KB Output is correct
27 Correct 12 ms 3928 KB Output is correct
28 Correct 34 ms 6600 KB Output is correct
29 Correct 33 ms 7104 KB Output is correct
30 Correct 31 ms 7292 KB Output is correct
31 Correct 29 ms 7272 KB Output is correct
32 Runtime error 1 ms 340 KB Execution killed with signal 6
33 Halted 0 ms 0 KB -