Submission #625828

# Submission time Handle Problem Language Result Execution time Memory
625828 2022-08-10T20:27:07 Z d4xn Catfish Farm (IOI22_fish) C++17
46 / 100
1000 ms 231616 KB
#pragma GCC optimize ("Ofast")
//#pragma GCC target ("avx2")
#include "fish.h"
#include <bits/stdc++.h>
using namespace std;
 
//#define int long long
#define ll long long
#define vi vector<int>
#define ii pair<int, int>
#define vii vector<ii>
#define tuple2 tuple<int, int>
#define tuple3 tuple<int, int, int>
 
const int N = 1e5;
 
int n, m;
vi c[N];
unordered_map<int, int> w[N];
unordered_map<int, ll> pre[N];
map<tuple2, ll> dp[N];
//map<tuple<int, int, int>, ll> dp; // dp[i][j][k] = maximos peces que puedo conseguir
              // con las k primeras columnas donde
              // en la columna k+1 he subido i-1
              // en la columna k+2 he subido j-1
 
ll mx(int curr, int h1, int h2) {
  if (curr == -1) return 0;
  
  tuple2 t = make_tuple(h1, h2);
  auto it = dp[curr].find(t);
  if (it != dp[curr].end()) return it->second;
  
  dp[curr][t] = mx(curr-1, 0, h1);
  it = dp[curr].find(t);
 
  //if (min(h1, h2) > 0) return it->second;

  if (curr+1 < n) {
    for (int h : c[curr+1]) {
      h++;
      ll cnt = 0;
 
      // ver si pillo los de la derecha
      if (curr+1 < n && h > max(h1, h2)) {
        if (curr+2 == n) {
          cnt += pre[curr+1][h-1] - pre[curr+1][h1-1];
          //assert(pre[curr+1].count(h-1) && pre[curr+1].count(h1-1));
        }
        else {
          cnt += pre[curr+1][h-1] - pre[curr+1][max(h1, h2)-1];
          //assert(pre[curr+1].count(h-1) && pre[curr+1].count(max(h1, h2)-1));
        }
      }
 
      // ver si pillo los de la izquierda      
      if (curr-1 >= 0) {
        cnt += pre[curr-1][h-1];
        //assert(pre[curr-1].count(h-1));
      }
      
 
      // ver si he eliminado alguno de los que he pillado
      cnt -= pre[curr][min(h, h1)-1];
      //assert(pre[curr].count(min(h, h1)-1));
 
      it->second = max(it->second, cnt + mx(curr-1, h, h1));
    }
  }
 
  if (curr-1 >= 0) {
    for (int h : c[curr-1]) {
      h++;
      ll cnt = 0;
 
      // ver si pillo los de la derecha
      if (curr+1 < n && h > max(h1, h2)) {
        if (curr+2 == n) {
          cnt += pre[curr+1][h-1] - pre[curr+1][h1-1];
          //assert(pre[curr+1].count(h-1) && pre[curr+1].count(h1-1));
        }
        else {
          cnt += pre[curr+1][h-1] - pre[curr+1][max(h1, h2)-1];
          //assert(pre[curr+1].count(h-1) && pre[curr+1].count(max(h1, h2)-1));
        }
      }
 
      // ver si pillo los de la izquierda      
      if (curr-1 >= 0) {
        cnt += pre[curr-1][h-1];
        //assert(pre[curr-1].count(h-1));
      }
      
 
      // ver si he eliminado alguno de los que he pillado
      cnt -= pre[curr][min(h, h1)-1];
      //assert(pre[curr].count(min(h, h1)-1));
 
      it->second = max(it->second, cnt + mx(curr-1, h, h1));
    }
  }

  return it->second;
}
 
long long max_weights(int N, int M, std::vector<int> X, std::vector<int> Y,
                      std::vector<int> W) {
  n = N;
  m = M;
 
  ll sum = 0;
  bool odd = 0;
  int mxX = 0;
  for (int i = 0; i < m; i++) {
    sum += W[i];
    if (X[i]%2) odd = 1;
    mxX = max(mxX, X[i]);

    w[X[i]][Y[i]] = W[i];
    c[X[i]].push_back(Y[i]);
  }
 
  if (!odd) return sum;
  if (mxX <= 1) {
    ll pre0[n], pre1[n];
    for (int i = 0; i < n; i++) {
      pre0[i] = (i ? pre0[i-1] : 0);
      pre1[i] = (i ? pre1[i-1] : 0);

      auto it = w[0].find(i);
      if (it != w[0].end()) pre0[i] += it->second;


      it = w[1].find(i);
      if (it != w[1].end()) pre1[i] += it->second;
    }

    if (n == 2) return max(pre0[n-1], pre1[n-1]);

    ll ans = max(pre0[n-1], pre1[n-1]);
    for (int i = 0; i < n; i++) {
      ans = max(ans, pre0[i] + pre1[n-1] - pre1[i]);
    }

    if (n >= 3) return ans;
  }

  map<int, int> heights;
  for (int i = 0; i < n; i++) {
    pre[i][-1] = 0;

    for (int &h : c[i]) heights[h]++;
 
    if (i >= 3) {
      for (int &h : c[i-3]) {
        heights[h]--;
        if (!heights[h]) heights.erase(h);
      }
    }
 
    ll sum1 = 0;
    ll sum2 = 0;
    ll sum3 = 0;
    for (auto &[h, cnt] : heights) {
      auto it = w[i].find(h);
      if (it != w[i].end()) sum3 += it->second;
      pre[i][h] = sum3;
 
      if (i-1 >= 0) {
        it = w[i-1].find(h);
        if (it != w[i-1].end()) sum2 += it->second;
        pre[i-1][h] = sum2;
      }
      if (i-2 >= 0) {
        it = w[i-2].find(h);
        if (it != w[i-2].end()) sum1 += it->second;
        pre[i-2][h] = sum1;
      }
    }
  }

  return mx(n-1, 0, 0);
}
# Verdict Execution time Memory Grader output
1 Correct 40 ms 23644 KB Output is correct
2 Correct 48 ms 25572 KB Output is correct
3 Correct 10 ms 18260 KB Output is correct
4 Correct 10 ms 18260 KB Output is correct
5 Correct 162 ms 40344 KB Output is correct
6 Correct 245 ms 42560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 18252 KB Output is correct
2 Correct 74 ms 30460 KB Output is correct
3 Correct 94 ms 34212 KB Output is correct
4 Correct 43 ms 23592 KB Output is correct
5 Correct 49 ms 25556 KB Output is correct
6 Correct 10 ms 18208 KB Output is correct
7 Correct 10 ms 18260 KB Output is correct
8 Correct 12 ms 18260 KB Output is correct
9 Correct 12 ms 18260 KB Output is correct
10 Correct 11 ms 18212 KB Output is correct
11 Correct 11 ms 18240 KB Output is correct
12 Correct 41 ms 25128 KB Output is correct
13 Correct 49 ms 27088 KB Output is correct
14 Correct 42 ms 25028 KB Output is correct
15 Correct 52 ms 26520 KB Output is correct
16 Correct 43 ms 25064 KB Output is correct
17 Correct 48 ms 26484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 18260 KB Output is correct
2 Correct 44 ms 52728 KB Output is correct
3 Correct 123 ms 72384 KB Output is correct
4 Correct 102 ms 68512 KB Output is correct
5 Correct 207 ms 94152 KB Output is correct
6 Correct 200 ms 94116 KB Output is correct
7 Correct 207 ms 94208 KB Output is correct
8 Correct 201 ms 94112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 18260 KB Output is correct
2 Correct 10 ms 18308 KB Output is correct
3 Correct 11 ms 18260 KB Output is correct
4 Correct 10 ms 18260 KB Output is correct
5 Correct 12 ms 18268 KB Output is correct
6 Correct 11 ms 18292 KB Output is correct
7 Correct 12 ms 18272 KB Output is correct
8 Correct 12 ms 18232 KB Output is correct
9 Correct 13 ms 18644 KB Output is correct
10 Correct 43 ms 20068 KB Output is correct
11 Correct 19 ms 19028 KB Output is correct
12 Correct 22 ms 19460 KB Output is correct
13 Correct 11 ms 18304 KB Output is correct
14 Correct 15 ms 18964 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 18260 KB Output is correct
2 Correct 10 ms 18308 KB Output is correct
3 Correct 11 ms 18260 KB Output is correct
4 Correct 10 ms 18260 KB Output is correct
5 Correct 12 ms 18268 KB Output is correct
6 Correct 11 ms 18292 KB Output is correct
7 Correct 12 ms 18272 KB Output is correct
8 Correct 12 ms 18232 KB Output is correct
9 Correct 13 ms 18644 KB Output is correct
10 Correct 43 ms 20068 KB Output is correct
11 Correct 19 ms 19028 KB Output is correct
12 Correct 22 ms 19460 KB Output is correct
13 Correct 11 ms 18304 KB Output is correct
14 Correct 15 ms 18964 KB Output is correct
15 Correct 12 ms 18644 KB Output is correct
16 Execution timed out 1085 ms 26704 KB Time limit exceeded
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 12 ms 18260 KB Output is correct
2 Correct 10 ms 18308 KB Output is correct
3 Correct 11 ms 18260 KB Output is correct
4 Correct 10 ms 18260 KB Output is correct
5 Correct 12 ms 18268 KB Output is correct
6 Correct 11 ms 18292 KB Output is correct
7 Correct 12 ms 18272 KB Output is correct
8 Correct 12 ms 18232 KB Output is correct
9 Correct 13 ms 18644 KB Output is correct
10 Correct 43 ms 20068 KB Output is correct
11 Correct 19 ms 19028 KB Output is correct
12 Correct 22 ms 19460 KB Output is correct
13 Correct 11 ms 18304 KB Output is correct
14 Correct 15 ms 18964 KB Output is correct
15 Correct 12 ms 18644 KB Output is correct
16 Execution timed out 1085 ms 26704 KB Time limit exceeded
17 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 12 ms 18260 KB Output is correct
2 Correct 44 ms 52728 KB Output is correct
3 Correct 123 ms 72384 KB Output is correct
4 Correct 102 ms 68512 KB Output is correct
5 Correct 207 ms 94152 KB Output is correct
6 Correct 200 ms 94116 KB Output is correct
7 Correct 207 ms 94208 KB Output is correct
8 Correct 201 ms 94112 KB Output is correct
9 Correct 330 ms 138060 KB Output is correct
10 Correct 213 ms 76284 KB Output is correct
11 Correct 445 ms 134220 KB Output is correct
12 Correct 10 ms 18260 KB Output is correct
13 Correct 11 ms 18224 KB Output is correct
14 Correct 10 ms 18304 KB Output is correct
15 Correct 10 ms 18200 KB Output is correct
16 Correct 10 ms 18188 KB Output is correct
17 Correct 12 ms 18252 KB Output is correct
18 Correct 12 ms 18260 KB Output is correct
19 Correct 11 ms 18260 KB Output is correct
20 Correct 45 ms 52692 KB Output is correct
21 Correct 49 ms 52608 KB Output is correct
22 Correct 462 ms 133068 KB Output is correct
23 Correct 911 ms 210228 KB Output is correct
24 Correct 974 ms 231616 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 40 ms 23644 KB Output is correct
2 Correct 48 ms 25572 KB Output is correct
3 Correct 10 ms 18260 KB Output is correct
4 Correct 10 ms 18260 KB Output is correct
5 Correct 162 ms 40344 KB Output is correct
6 Correct 245 ms 42560 KB Output is correct
7 Correct 10 ms 18252 KB Output is correct
8 Correct 74 ms 30460 KB Output is correct
9 Correct 94 ms 34212 KB Output is correct
10 Correct 43 ms 23592 KB Output is correct
11 Correct 49 ms 25556 KB Output is correct
12 Correct 10 ms 18208 KB Output is correct
13 Correct 10 ms 18260 KB Output is correct
14 Correct 12 ms 18260 KB Output is correct
15 Correct 12 ms 18260 KB Output is correct
16 Correct 11 ms 18212 KB Output is correct
17 Correct 11 ms 18240 KB Output is correct
18 Correct 41 ms 25128 KB Output is correct
19 Correct 49 ms 27088 KB Output is correct
20 Correct 42 ms 25028 KB Output is correct
21 Correct 52 ms 26520 KB Output is correct
22 Correct 43 ms 25064 KB Output is correct
23 Correct 48 ms 26484 KB Output is correct
24 Correct 12 ms 18260 KB Output is correct
25 Correct 44 ms 52728 KB Output is correct
26 Correct 123 ms 72384 KB Output is correct
27 Correct 102 ms 68512 KB Output is correct
28 Correct 207 ms 94152 KB Output is correct
29 Correct 200 ms 94116 KB Output is correct
30 Correct 207 ms 94208 KB Output is correct
31 Correct 201 ms 94112 KB Output is correct
32 Correct 12 ms 18260 KB Output is correct
33 Correct 10 ms 18308 KB Output is correct
34 Correct 11 ms 18260 KB Output is correct
35 Correct 10 ms 18260 KB Output is correct
36 Correct 12 ms 18268 KB Output is correct
37 Correct 11 ms 18292 KB Output is correct
38 Correct 12 ms 18272 KB Output is correct
39 Correct 12 ms 18232 KB Output is correct
40 Correct 13 ms 18644 KB Output is correct
41 Correct 43 ms 20068 KB Output is correct
42 Correct 19 ms 19028 KB Output is correct
43 Correct 22 ms 19460 KB Output is correct
44 Correct 11 ms 18304 KB Output is correct
45 Correct 15 ms 18964 KB Output is correct
46 Correct 12 ms 18644 KB Output is correct
47 Execution timed out 1085 ms 26704 KB Time limit exceeded
48 Halted 0 ms 0 KB -