Submission #62266

#TimeUsernameProblemLanguageResultExecution timeMemory
62266BenqThe grade (info1cup18_thegrade)C++11
100 / 100
93 ms17312 KiB
#include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 100001; ll po (ll b, ll p) { return !p?1:po(b*b%MOD,p/2)*(p&1?b:1)%MOD; } ll inv (ll b) { return po(b,MOD-2); } int ad(int a, int b) { return (a+b)%MOD; } int sub(int a, int b) { return (a-b+MOD)%MOD; } int mul(int a, int b) { return (ll)a*b%MOD; } int AD(int& a, int b) { return a = ad(a,b); } int SUB(int& a, int b) { return a = sub(a,b); } int MUL(int& a, int b) { return a = mul(a,b); } int oc[1000001], num; int fac[MX], ifac[MX], in[MX]; int q,p; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> q >> p; ll sum = p; int cdiv = 1; fac[0] = ifac[0] = 1; FOR(i,1,MX) { in[i] = inv(i); fac[i] = mul(fac[i-1],i); ifac[i] = mul(ifac[i-1],in[i]); } F0R(i,q) { int t,x; cin >> t >> x; if (t == 0) { num ++, sum -= x; MUL(cdiv,in[++oc[x]]); } else { num --, sum += x; MUL(cdiv,oc[x]--); } if (sum >= 0) cout << mul(mul(fac[num+sum],ifac[sum]),cdiv); else cout << -1; cout << "\n"; } } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...