This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
ll po (ll b, ll p) { return !p?1:po(b*b%MOD,p/2)*(p&1?b:1)%MOD; }
ll inv (ll b) { return po(b,MOD-2); }
int ad(int a, int b) { return (a+b)%MOD; }
int sub(int a, int b) { return (a-b+MOD)%MOD; }
int mul(int a, int b) { return (ll)a*b%MOD; }
int AD(int& a, int b) { return a = ad(a,b); }
int SUB(int& a, int b) { return a = sub(a,b); }
int MUL(int& a, int b) { return a = mul(a,b); }
int oc[1000001], num;
int fac[MX], ifac[MX], in[MX];
int q,p;
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> q >> p;
ll sum = p;
int cdiv = 1;
fac[0] = ifac[0] = 1;
FOR(i,1,MX) {
in[i] = inv(i);
fac[i] = mul(fac[i-1],i);
ifac[i] = mul(ifac[i-1],in[i]);
}
F0R(i,q) {
int t,x; cin >> t >> x;
if (t == 0) {
num ++, sum -= x;
MUL(cdiv,in[++oc[x]]);
} else {
num --, sum += x;
MUL(cdiv,oc[x]--);
}
if (sum >= 0) cout << mul(mul(fac[num+sum],ifac[sum]),cdiv);
else cout << -1;
cout << "\n";
}
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |