Submission #619067

# Submission time Handle Problem Language Result Execution time Memory
619067 2022-08-02T09:39:40 Z jophyyjh Building Bridges (CEOI17_building) C++14
100 / 100
84 ms 97736 KB
/**
 * Notes during contest.
 * 
 * ------ A ------
 * In the example, (3,7,6,6) is the set of optimal pillars to select. Well, I assume
 * that the subset of pillars shall be connected in order? First, sum all costs of
 * pillars. The cost of pillars that are used will then be deducted from the total.
 * Our dp formula is:
 *        dp[k] = min( dp[i] + (h[k] - h[i])^2 - c[k])
 *              = min( (dp[i] + h[i]^2) - 2h[i] * h[k] ) + (h[k]^2 - c[k])
 * This looks like sth that can be solved with dynamic convex hull trick. IMO this
 * is like the only way to AC this problem. Unfortunately, I don't know how to code
 * one using std::set<>, nor do I know LiChao tree. Maybe I'll just head to problem
 * C.
 * [After contest]
 * First of all, I think i should've noticed the small size of |w_i| in [S2] allows
 * us to store things in a std::set<> for each value of w_i. Now, without a time
 * limit, let's try LiChao tree in impl2, and perhaps the dynamic convex hull trick
 * optimization in impl3 (notoriously difficult to code...).
 * 
 * ------ B ------
 * [S1-2] is solvable with a O(n^2) dp (Z-array + dp). I also have a hunch that we
 * can pass [S3] too (#time_limit = 10s). Oh no... I really suck at str processing
 * problems... I guess 60 points would be my limit.
 * 
 * ------ C ------
 * Can we score some partials here? Clearly, when Tom visits the route, only the
 * last node has pigeons, so #pigeons_Tom_meets = #last_node_in_route. OK. Let V be
 * the set of nodes in the route, so |V| <= v and
 *      #pigeons_Tom_meets = sum{ p_i : i is adjacent to at least one node in V
 *                                      or i is in V }.     (Wrong, see below)
 * We also know that #pigeons_Jerry_meets = p_i where i is the first node. This means
 * we can solve [S1-3]. Looks like DFS + dp on tree is good enough to solve the whole
 * problem!
 * --------------------------------- After contest -----------------------------------
 * I totally misunderstood the problem... Took me over an hour in the contest.. The
 * stuff above is wrong... Full solution is a standard dfs + dp on tree in O(nv).
 * 
 * Time Complexity 1: O(n * log(n))
 * Time Complexity 2: O(n^2)
 * Time Complexity 3: O(n * v)
 * Implementation 2             (Full solution, LiChao Tree)
*/
 
#include <bits/stdc++.h>
 
typedef int64_t     int_t;
typedef std::vector<int_t>  vec;
typedef std::complex<int_t> complex_t;
 
const int_t INF = 0x3f3f3f3f3f3f;
const int_t H_MAX = 1e6;
 
inline int_t sqr(int_t k)   { return k * k; }
 
inline int_t dot(const complex_t& c1, const complex_t& c2) {
    return (std::conj(c1) * c2).real();
}
 
 
struct LiChao {
    int_t max_x;
    std::vector<complex_t> tree;
    LiChao(int_t max) {
        max_x = max;
        tree.assign(3 * max_x, complex_t{0, -INF});
    }
    void _insert(int_t k, int_t i, int_t j, complex_t line) {
        if (j - i == 1)
            return;
        int_t mid = (i + j) / 2;
        bool mid_g = (dot(line, complex_t{mid, 1}) > dot(tree[k], complex_t{mid, 1}));
        bool left_g = (dot(line, complex_t{i, 1}) > dot(tree[k], complex_t{i, 1}));
        if (mid_g)
            std::swap(line, tree[k]);
        if (mid_g != left_g)
            _insert(2 * k, i, mid, line);
        else
            _insert(2 * k + 1, mid, j, line);
    }
    int_t _query(int_t k, int_t i, int_t j, int_t x) {
        if (j - i == 1)
            return -INF;
        int_t mid = (i + j) / 2, val = dot(tree[k], complex_t{x, 1});
        if (x < mid)
            return std::max(val, _query(2 * k, i, mid, x));
        else
            return std::max(val, _query(2 * k + 1, mid, j, x));
    }
    inline void insert(complex_t line)  { _insert(1, 0, max_x, line); }
    inline int_t query(int_t x)         { return _query(1, 0, max_x, x); }
};
 
int main() {
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(NULL);
 
    int_t n;
    std::cin >> n;
    vec h(n), cost(n);
    for (int_t k = 0; k < n; k++)
        std::cin >> h[k];
    int_t cost_sum = 0;
    for (int_t k = 0; k < n; k++) {
        std::cin >> cost[k];
        cost_sum += cost[k];
    }
 
 
    vec dp(n);
    dp[0] = -cost[0];
    LiChao tree(2 * H_MAX + 1);
    tree.insert(complex_t{2 * h[0], -dp[0] - sqr(h[0])});
    for (int_t k = 1; k < n; k++) {
        // dp[k] = INF;
        // for (int_t i = k - 1; i >= 0; i--)
        //     dp[k] = std::min(dp[k], dp[i] + sqr(h[k] - h[i]));
        // dp[k] -= cost[k];
        dp[k] = -tree.query(h[k]) + (sqr(h[k]) - cost[k]);
        tree.insert(complex_t{2 * h[k], -dp[k] - sqr(h[k])});
    }
    std::cout << dp[n - 1] + cost_sum << '\n';
}
# Verdict Execution time Memory Grader output
1 Correct 35 ms 94208 KB Output is correct
2 Correct 38 ms 94136 KB Output is correct
3 Correct 35 ms 94180 KB Output is correct
4 Correct 35 ms 94212 KB Output is correct
5 Correct 36 ms 94168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 78 ms 97464 KB Output is correct
2 Correct 75 ms 97576 KB Output is correct
3 Correct 75 ms 97568 KB Output is correct
4 Correct 68 ms 97472 KB Output is correct
5 Correct 66 ms 97492 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 35 ms 94208 KB Output is correct
2 Correct 38 ms 94136 KB Output is correct
3 Correct 35 ms 94180 KB Output is correct
4 Correct 35 ms 94212 KB Output is correct
5 Correct 36 ms 94168 KB Output is correct
6 Correct 78 ms 97464 KB Output is correct
7 Correct 75 ms 97576 KB Output is correct
8 Correct 75 ms 97568 KB Output is correct
9 Correct 68 ms 97472 KB Output is correct
10 Correct 66 ms 97492 KB Output is correct
11 Correct 77 ms 97736 KB Output is correct
12 Correct 84 ms 97496 KB Output is correct
13 Correct 67 ms 97616 KB Output is correct
14 Correct 77 ms 97676 KB Output is correct
15 Correct 73 ms 97480 KB Output is correct
16 Correct 70 ms 97420 KB Output is correct
17 Correct 62 ms 97684 KB Output is correct
18 Correct 65 ms 97676 KB Output is correct