Submission #617828

# Submission time Handle Problem Language Result Execution time Memory
617828 2022-08-01T14:58:40 Z happypotato Fountain Parks (IOI21_parks) C++17
30 / 100
648 ms 59080 KB
#include "parks.h"
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pb push_back
#define pii pair<int, int>
#define ff first
#define ss second
const int mxN = 2e5 + 1;
const int dx[mxN] = {0, 1, 0, -1}, dy[mxN] = {1, 0, -1, 0};
bool vis[mxN];
pair<pii, int> pts[mxN];
pii opts[mxN];
map<pii, int> allpts;
int n;
vector<pii> edges;
vector<pii> imp;
bool CheckConnected() {
    queue<pii> q;
    set<pii> track;
    q.push(pts[0].ff);
    track.insert(pts[0].ff);
    while (!q.empty()) {
        pii cur = q.front();
        q.pop();
        for (int k = 0; k < 4; k++) {
            int nx = cur.ff + dx[k] * 2;
            int ny = cur.ss + dy[k] * 2;
            if (allpts.find({nx, ny}) != allpts.end() && track.find({nx, ny}) == track.end()) {
                q.push({nx, ny});
                track.insert({nx, ny});
                edges.pb({allpts[cur], allpts[{nx, ny}]});
            }
        }
    }
    return (int(track.size()) == n);
}
void st123() {
    int arr[3][mxN + 10];
    for (int i = 0; i < 3; i++) {
        for (int j = 0; j < mxN + 10; j++) {
            arr[i][j] = -1;
        }
    }
    for (int i = 0; i < n; i++) {
        arr[(pts[i].ff.ff >> 1) - 1][pts[i].ff.ss] = pts[i].ss;
    }
    bool con01 = false, con12 = false;
    bool notfix = false;
    vector<int> u, v, a, b;
    for (int i = 0; i < mxN + 6; i += 2) {
        // if (i <= 10) cout << arr[0][i] << ' ' << arr[1][i] << ' ' << arr[2][i] << endl;
        if (arr[0][i] >= 0 && arr[0][i + 2] >= 0) {
            u.pb(arr[0][i]); v.pb(arr[0][i + 2]);
            a.pb(1); b.pb(i + 1);
        }
        if (arr[2][i] >= 0 && arr[2][i + 2] >= 0) {
            u.pb(arr[2][i]); v.pb(arr[2][i + 2]);
            a.pb(7); b.pb(i + 1);
        }
        bool special = false;
        if (notfix) {
            u.pb(arr[0][i]); v.pb(arr[1][i]);
            a.pb(3); b.pb(i + 1);
            special = true;
            notfix = false;
        }
        bool usemid = false;
        if (!(arr[1][i + 2] >= 0 && arr[2][i + 2] >= 0 && !con12)) special = true;
        if (arr[1][i] >= 0 && arr[1][i + 2] >= 0) {
            u.pb(arr[1][i]); v.pb(arr[1][i + 2]);
            a.pb((special ? 5 : 3)); b.pb(i + 1);
            usemid = !special;
        }
        if (arr[0][i + 2] >= 0 && arr[1][i + 2] >= 0 && !con01) {
            if (!usemid) {
                u.pb(arr[0][i + 2]); v.pb(arr[1][i + 2]);
                a.pb(3); b.pb(i + 1);
            } else notfix = true;
            con01 = true;
        } else con01 = false;
        if (arr[1][i + 2] >= 0 && arr[2][i + 2] >= 0 && !con12) {
            u.pb(arr[1][i + 2]); v.pb(arr[2][i + 2]);
            a.pb(5); b.pb(i + 1);
            con12 = true;
        } else con12 = false;
    }
    build(u, v, a, b);
    return;
}
void st45() {
    set<pair<pii, pii> > edgeset;
    for (pii &cur : edges) {
        pair<pii, pii> edge = {opts[cur.ff], opts[cur.ss]};
        if (edge.ff.ff > edge.ss.ff) {
            swap(edge.ff, edge.ss);
            swap(cur.ff, cur.ss);
        } else if (edge.ff.ff == edge.ss.ff && edge.ff.ss > edge.ss.ss) {
            swap(edge.ff, edge.ss);
            swap(cur.ff, cur.ss);
        }
        edgeset.insert(edge);
    }
    vector<int> ordering[4];
    for (int i = 0; i < edges.size(); i++) {
        pii fir = opts[edges[i].ff], sec = opts[edges[i].ss];
        pii important;
        bool left, right, middle;
        if (fir.ff == sec.ff) {
            // -2
            left = (edgeset.find({{fir.ff - 2, fir.ss}, fir}) != edgeset.end());
            right = (edgeset.find({{sec.ff - 2, sec.ss}, sec}) != edgeset.end());
            middle = (edgeset.find({{fir.ff - 2, fir.ss}, {sec.ff - 2, sec.ss}}) != edgeset.end());
            if (left && right) important.ff = 3;
            else if (middle) important.ff = 2;
            else if (left || right) important.ff = 1;
            else important.ff = 0;
            // +2
            left = (edgeset.find({fir, {fir.ff + 2, fir.ss}}) != edgeset.end());
            right = (edgeset.find({sec, {sec.ff + 2, sec.ss}}) != edgeset.end());
            middle = (edgeset.find({{fir.ff + 2, fir.ss}, {sec.ff + 2, sec.ss}}) != edgeset.end());
            if (left && right) important.ss = 3;
            else if (middle) important.ss = 2;
            else if (left || right) important.ss = 1;
            else important.ss = 0;
        } else if (fir.ss == sec.ss) {
            // -2
            left = (edgeset.find({{fir.ff, fir.ss - 2}, fir}) != edgeset.end());
            right = (edgeset.find({{sec.ff, sec.ss - 2}, sec}) != edgeset.end());
            left = (edgeset.find({{fir.ff, fir.ss - 2}, {sec.ff, sec.ss - 2}}) != edgeset.end());
            if (left && right) important.ff = 3;
            else if (middle) important.ff = 2;
            else if (left || right) important.ff = 1;
            else important.ff = 0;
            // +2
            left = (edgeset.find({fir, {fir.ff, fir.ss + 2}}) != edgeset.end());
            right = (edgeset.find({sec, {sec.ff, sec.ss + 2}}) != edgeset.end());
            left = (edgeset.find({{fir.ff, fir.ss + 2}, {sec.ff, sec.ss + 2}}) != edgeset.end());
            if (left && right) important.ss = 3;
            else if (middle) important.ss = 2;
            else if (left || right) important.ss = 1;
            else important.ss = 0;
        }
        imp.pb(important);
        ordering[max(important.ff, important.ss)].pb(i);
    }
    int m = edges.size();
    vector<pii> coor(m);
    set<pii> appear;
    for (int urgency = 3; urgency >= 0; urgency--) {
        for (int &cur : ordering[urgency]) {
            pii fir = opts[edges[cur].ff], sec = opts[edges[cur].ss];
            if (imp[cur].ff >= imp[cur].ss && appear.find({fir.ff + 1, fir.ss + 1}) == appear.end()) {
                // add
                coor[cur] = {fir.ff + 1, fir.ss + 1};
            } else {
                // minus
                coor[cur] = {sec.ff - 1, sec.ss - 1};
            }
            appear.insert(coor[cur]);
        }
    }
    vector<int> u(m), v(m), a(m), b(m);
    for (int i = 0; i < m; i++) {
        u[i] = edges[i].ff;
        v[i] = edges[i].ss;
        a[i] = coor[i].ff;
        b[i] = coor[i].ss;
    }
    build(u, v, a, b);
    return;
}
int construct_roads(vector<int> ox, vector<int> oy) {
    n = ox.size();
    int maxx = 0;
    for (int i = 0; i < n; i++) {
        pts[i] = {{ox[i], oy[i]}, i};
        opts[i] = pts[i].ff;
        allpts[pts[i].ff] = i;
        maxx = max(maxx, pts[i].ff.ff);
    }
    // for (int i = 0; i < n; i++) {
    //     cout << pts[i].ff.ff << ' ' << pts[i].ff.ss << ' ' << pts[i].ss << endl;
    // }
    if (!CheckConnected()) return 0;
    if (maxx <= 6) st123();
    else st45();
    return 1;
}

Compilation message

parks.cpp: In function 'void st45()':
parks.cpp:105:23: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  105 |     for (int i = 0; i < edges.size(); i++) {
      |                     ~~^~~~~~~~~~~~~~
parks.cpp:140:18: warning: 'middle' may be used uninitialized in this function [-Wmaybe-uninitialized]
  140 |             else if (middle) important.ss = 2;
      |                  ^~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 3 ms 2644 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 1 ms 276 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 181 ms 20284 KB Output is correct
10 Correct 15 ms 4524 KB Output is correct
11 Correct 102 ms 11864 KB Output is correct
12 Correct 27 ms 5364 KB Output is correct
13 Correct 44 ms 6216 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 172 ms 20660 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 3 ms 2644 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 1 ms 276 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 181 ms 20284 KB Output is correct
10 Correct 15 ms 4524 KB Output is correct
11 Correct 102 ms 11864 KB Output is correct
12 Correct 27 ms 5364 KB Output is correct
13 Correct 44 ms 6216 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 172 ms 20660 KB Output is correct
17 Correct 2 ms 2644 KB Output is correct
18 Correct 2 ms 2644 KB Output is correct
19 Correct 2 ms 2644 KB Output is correct
20 Correct 2 ms 2644 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 2 ms 2644 KB Output is correct
23 Correct 482 ms 40892 KB Output is correct
24 Correct 2 ms 2644 KB Output is correct
25 Correct 3 ms 2900 KB Output is correct
26 Correct 3 ms 596 KB Output is correct
27 Correct 3 ms 724 KB Output is correct
28 Correct 156 ms 18080 KB Output is correct
29 Correct 257 ms 25516 KB Output is correct
30 Correct 362 ms 34744 KB Output is correct
31 Correct 504 ms 41868 KB Output is correct
32 Correct 2 ms 2644 KB Output is correct
33 Correct 2 ms 2644 KB Output is correct
34 Correct 3 ms 2644 KB Output is correct
35 Correct 1 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 2 ms 2644 KB Output is correct
38 Correct 2 ms 2644 KB Output is correct
39 Correct 2 ms 2644 KB Output is correct
40 Correct 1 ms 2644 KB Output is correct
41 Correct 0 ms 212 KB Output is correct
42 Correct 2 ms 2644 KB Output is correct
43 Correct 2 ms 468 KB Output is correct
44 Correct 2 ms 616 KB Output is correct
45 Correct 195 ms 20772 KB Output is correct
46 Correct 280 ms 30208 KB Output is correct
47 Correct 284 ms 30196 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 3 ms 2644 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 1 ms 276 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 181 ms 20284 KB Output is correct
10 Correct 15 ms 4524 KB Output is correct
11 Correct 102 ms 11864 KB Output is correct
12 Correct 27 ms 5364 KB Output is correct
13 Correct 44 ms 6216 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 172 ms 20660 KB Output is correct
17 Correct 2 ms 2644 KB Output is correct
18 Correct 2 ms 2644 KB Output is correct
19 Correct 2 ms 2644 KB Output is correct
20 Correct 2 ms 2644 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 2 ms 2644 KB Output is correct
23 Correct 482 ms 40892 KB Output is correct
24 Correct 2 ms 2644 KB Output is correct
25 Correct 3 ms 2900 KB Output is correct
26 Correct 3 ms 596 KB Output is correct
27 Correct 3 ms 724 KB Output is correct
28 Correct 156 ms 18080 KB Output is correct
29 Correct 257 ms 25516 KB Output is correct
30 Correct 362 ms 34744 KB Output is correct
31 Correct 504 ms 41868 KB Output is correct
32 Correct 2 ms 2644 KB Output is correct
33 Correct 2 ms 2644 KB Output is correct
34 Correct 3 ms 2644 KB Output is correct
35 Correct 1 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 2 ms 2644 KB Output is correct
38 Correct 2 ms 2644 KB Output is correct
39 Correct 2 ms 2644 KB Output is correct
40 Correct 1 ms 2644 KB Output is correct
41 Correct 0 ms 212 KB Output is correct
42 Correct 2 ms 2644 KB Output is correct
43 Correct 2 ms 468 KB Output is correct
44 Correct 2 ms 616 KB Output is correct
45 Correct 195 ms 20772 KB Output is correct
46 Correct 280 ms 30208 KB Output is correct
47 Correct 284 ms 30196 KB Output is correct
48 Correct 2 ms 2644 KB Output is correct
49 Correct 2 ms 2644 KB Output is correct
50 Correct 2 ms 2644 KB Output is correct
51 Correct 2 ms 2644 KB Output is correct
52 Correct 1 ms 2644 KB Output is correct
53 Correct 2 ms 2644 KB Output is correct
54 Correct 2 ms 2644 KB Output is correct
55 Correct 574 ms 41560 KB Output is correct
56 Correct 2 ms 2644 KB Output is correct
57 Correct 4 ms 3028 KB Output is correct
58 Correct 16 ms 3924 KB Output is correct
59 Correct 9 ms 1364 KB Output is correct
60 Correct 255 ms 21784 KB Output is correct
61 Correct 346 ms 30028 KB Output is correct
62 Correct 461 ms 36444 KB Output is correct
63 Correct 526 ms 41500 KB Output is correct
64 Correct 0 ms 212 KB Output is correct
65 Correct 2 ms 2644 KB Output is correct
66 Correct 0 ms 212 KB Output is correct
67 Correct 410 ms 38144 KB Output is correct
68 Correct 381 ms 38248 KB Output is correct
69 Correct 399 ms 38820 KB Output is correct
70 Correct 4 ms 724 KB Output is correct
71 Correct 7 ms 1200 KB Output is correct
72 Correct 218 ms 20252 KB Output is correct
73 Correct 295 ms 30492 KB Output is correct
74 Correct 445 ms 38296 KB Output is correct
75 Correct 432 ms 40464 KB Output is correct
76 Correct 398 ms 38980 KB Output is correct
77 Correct 4 ms 852 KB Output is correct
78 Correct 6 ms 1364 KB Output is correct
79 Correct 184 ms 21484 KB Output is correct
80 Correct 290 ms 31720 KB Output is correct
81 Correct 456 ms 39812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 3 ms 2644 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 1 ms 276 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 181 ms 20284 KB Output is correct
10 Correct 15 ms 4524 KB Output is correct
11 Correct 102 ms 11864 KB Output is correct
12 Correct 27 ms 5364 KB Output is correct
13 Correct 44 ms 6216 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 172 ms 20660 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 613 ms 59080 KB Output is correct
21 Incorrect 573 ms 55372 KB Tree @(56861, 56865) appears more than once: for edges on positions 2 and 4
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 3 ms 2644 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 1 ms 276 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 181 ms 20284 KB Output is correct
10 Correct 15 ms 4524 KB Output is correct
11 Correct 102 ms 11864 KB Output is correct
12 Correct 27 ms 5364 KB Output is correct
13 Correct 44 ms 6216 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 172 ms 20660 KB Output is correct
17 Correct 648 ms 58440 KB Output is correct
18 Incorrect 645 ms 58560 KB Tree @(50003, 50001) appears more than once: for edges on positions 39329 and 39330
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 2644 KB Output is correct
2 Correct 3 ms 2644 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 2644 KB Output is correct
5 Correct 2 ms 2644 KB Output is correct
6 Correct 1 ms 276 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 181 ms 20284 KB Output is correct
10 Correct 15 ms 4524 KB Output is correct
11 Correct 102 ms 11864 KB Output is correct
12 Correct 27 ms 5364 KB Output is correct
13 Correct 44 ms 6216 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 172 ms 20660 KB Output is correct
17 Correct 2 ms 2644 KB Output is correct
18 Correct 2 ms 2644 KB Output is correct
19 Correct 2 ms 2644 KB Output is correct
20 Correct 2 ms 2644 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 2 ms 2644 KB Output is correct
23 Correct 482 ms 40892 KB Output is correct
24 Correct 2 ms 2644 KB Output is correct
25 Correct 3 ms 2900 KB Output is correct
26 Correct 3 ms 596 KB Output is correct
27 Correct 3 ms 724 KB Output is correct
28 Correct 156 ms 18080 KB Output is correct
29 Correct 257 ms 25516 KB Output is correct
30 Correct 362 ms 34744 KB Output is correct
31 Correct 504 ms 41868 KB Output is correct
32 Correct 2 ms 2644 KB Output is correct
33 Correct 2 ms 2644 KB Output is correct
34 Correct 3 ms 2644 KB Output is correct
35 Correct 1 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 2 ms 2644 KB Output is correct
38 Correct 2 ms 2644 KB Output is correct
39 Correct 2 ms 2644 KB Output is correct
40 Correct 1 ms 2644 KB Output is correct
41 Correct 0 ms 212 KB Output is correct
42 Correct 2 ms 2644 KB Output is correct
43 Correct 2 ms 468 KB Output is correct
44 Correct 2 ms 616 KB Output is correct
45 Correct 195 ms 20772 KB Output is correct
46 Correct 280 ms 30208 KB Output is correct
47 Correct 284 ms 30196 KB Output is correct
48 Correct 2 ms 2644 KB Output is correct
49 Correct 2 ms 2644 KB Output is correct
50 Correct 2 ms 2644 KB Output is correct
51 Correct 2 ms 2644 KB Output is correct
52 Correct 1 ms 2644 KB Output is correct
53 Correct 2 ms 2644 KB Output is correct
54 Correct 2 ms 2644 KB Output is correct
55 Correct 574 ms 41560 KB Output is correct
56 Correct 2 ms 2644 KB Output is correct
57 Correct 4 ms 3028 KB Output is correct
58 Correct 16 ms 3924 KB Output is correct
59 Correct 9 ms 1364 KB Output is correct
60 Correct 255 ms 21784 KB Output is correct
61 Correct 346 ms 30028 KB Output is correct
62 Correct 461 ms 36444 KB Output is correct
63 Correct 526 ms 41500 KB Output is correct
64 Correct 0 ms 212 KB Output is correct
65 Correct 2 ms 2644 KB Output is correct
66 Correct 0 ms 212 KB Output is correct
67 Correct 410 ms 38144 KB Output is correct
68 Correct 381 ms 38248 KB Output is correct
69 Correct 399 ms 38820 KB Output is correct
70 Correct 4 ms 724 KB Output is correct
71 Correct 7 ms 1200 KB Output is correct
72 Correct 218 ms 20252 KB Output is correct
73 Correct 295 ms 30492 KB Output is correct
74 Correct 445 ms 38296 KB Output is correct
75 Correct 432 ms 40464 KB Output is correct
76 Correct 398 ms 38980 KB Output is correct
77 Correct 4 ms 852 KB Output is correct
78 Correct 6 ms 1364 KB Output is correct
79 Correct 184 ms 21484 KB Output is correct
80 Correct 290 ms 31720 KB Output is correct
81 Correct 456 ms 39812 KB Output is correct
82 Correct 0 ms 212 KB Output is correct
83 Correct 0 ms 212 KB Output is correct
84 Correct 0 ms 212 KB Output is correct
85 Correct 613 ms 59080 KB Output is correct
86 Incorrect 573 ms 55372 KB Tree @(56861, 56865) appears more than once: for edges on positions 2 and 4
87 Halted 0 ms 0 KB -