Submission #60950

# Submission time Handle Problem Language Result Execution time Memory
60950 2018-07-25T04:09:56 Z Benq Wild Boar (JOI18_wild_boar) C++11
12 / 100
317 ms 130056 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)

#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()

const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 2001;

typedef array<ll,3> T; // distance, begin, end
T ori = {INF,INF,INF};
template<class T> void MN (T& a, T b) { a = min(a,b); }

struct dat {
    pi path;
    vector<T> besPath;
    dat() {}
    dat(pi _path, vector<T> _besPath) {
        path = _path;
        T mn = ori; for (auto a: _besPath) MN(mn,a);
        T bes[2][2]; F0R(i,2) F0R(j,2) bes[i][j] = ori;
        bes[0][0] = mn;
        for (auto a: _besPath) {
            if (a[1] == mn[1]) {
                if (a[2] != mn[2]) MN(bes[0][1],a);
            } else {
                MN(bes[1][0],a);
            }
        }
        for (auto a: _besPath) if (a[1] != mn[1] && a[2] != bes[1][0][2]) MN(bes[1][1],a);
        F0R(i,2) F0R(j,2) if (bes[i][j] != ori) besPath.pb(bes[i][j]);
    }
};

dat comb(const dat& l, const dat& r) {
    assert(l.path.s == r.path.f);
    
    vector<T> cand;
    for (auto a: l.besPath) for (auto b: r.besPath) if (a[2] != b[1]) 
        cand.pb({a[0]+b[0],a[1],b[2]});
        
    return dat({l.path.f,r.path.s},cand);
}

template<int SZ> struct Dijkstra {
    pl dist[SZ][2];
    vpi adj[SZ];
    
    void addEdge(int A, int B, int C) {
        adj[A].pb({B,C}), adj[B].pb({A,C});
    }
    
    void gen(T tmp) {
        F0R(i,SZ) F0R(j,2) dist[i][j] = {INF,INF};
        priority_queue<T,vector<T>,greater<T>> q;
        
        dist[tmp[2]][0] = {tmp[0],tmp[1]};
        q.push(tmp);
        
    	while (sz(q)) {
    		auto x = q.top(); q.pop();
    		
    		bool ok = 0;
    		F0R(j,2) if (dist[x[2]][j] == mp(x[0],x[1])) ok = 1;
    		if (!ok) continue;
    		
    		for (pi y: adj[x[2]]) {
    		    if (y.f == x[1]) continue;
    		    if (x[0]+y.s < dist[y.f][0].f) {
    		        if (dist[y.f][0].s != x[2]) dist[y.f][1] = dist[y.f][0];
        			dist[y.f][0] = {x[0]+y.s,x[2]};
        			q.push({x[0]+y.s,x[2],y.f});
    		    } else {
    		        if (x[2] == dist[y.f][0].s) continue;
    		        if (x[0]+y.s < dist[y.f][1].f) {
            			dist[y.f][1] = {x[0]+y.s,x[2]};
        			    q.push({x[0]+y.s,x[2],y.f});
    		        }
    		    }
    		}
    	}
    }
};

Dijkstra<MX> D;

int N,M,t,L;
dat d[MX][MX];

void init() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M >> t >> L;
    F0R(i,M) {
        int A,B,C; cin >> A >> B >> C; 
        D.addEdge(A,B,C);
    }
}

ll get(vl X) {
    dat z = d[X[0]][X[1]];
    FOR(i,2,sz(X)) z = comb(z,d[X[i-1]][X[i]]);
    /*if (sz(X) == 3) {
        for (auto a: d[2][1].besPath) {
            cout << a[0] << " " << a[1] << " " << a[2] << "\n";
        }
        cout << "HI " << z.path.f << " " << z.path.s << "\n";
        for (auto a: z.besPath) cout << a[0] << " " << a[1] << " " << a[2] << "\n";
        exit(0);
    }*/
    ll ans = INF;
    for (auto a: z.besPath) ans = min(ans,a[0]);
    if (ans == INF) ans = -1;
    return ans;
}

int main() {
    init();
    vector<T> path[MX];
    FOR(i,1,N+1) {
        for (pi j: D.adj[i]) {
            D.gen({j.s,i,j.f});
            FOR(k,1,N+1) if (k != i)
                F0R(z,2) if (D.dist[k][z].f != INF) 
                    path[k].pb({D.dist[k][z].f,j.f,D.dist[k][z].s});
        }
        
        FOR(k,1,N+1) if (k != i) {
            /*if (k == 1) {
                for (auto a: path[k]) cout << "HI " << a[0] << " " << a[1] << " " << a[2] << "\n";
            }*/
            d[i][k] = dat({i,k},path[k]);
            /*if (k == 1) {
                for (auto a: d[i][k].besPath) cout << "hi " << a[0] << " " << a[1] << " " << a[2] << "\n";
                exit(0);
            }*/
            path[k].clear();
        }
    }
    
    vl X(L); F0R(i,L) cin >> X[i];
    F0R(i,t) {
        int p,q; cin >> p >> q;
        X[p-1] = q;
        /*FOR(j,2,sz(X)+1) {
            vl XX = vl(X.begin(),X.begin()+j);
            cout << get(XX) << "\n";
        }*/
        cout << get(X) << "\n";
    }
}

/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 122 ms 125816 KB Output is correct
2 Correct 120 ms 125948 KB Output is correct
3 Correct 128 ms 125992 KB Output is correct
4 Correct 135 ms 125992 KB Output is correct
5 Correct 143 ms 126048 KB Output is correct
6 Correct 146 ms 126048 KB Output is correct
7 Correct 154 ms 126048 KB Output is correct
8 Correct 141 ms 126048 KB Output is correct
9 Correct 149 ms 126048 KB Output is correct
10 Correct 143 ms 126116 KB Output is correct
11 Correct 151 ms 126192 KB Output is correct
12 Correct 137 ms 126192 KB Output is correct
13 Correct 139 ms 126192 KB Output is correct
14 Correct 141 ms 126192 KB Output is correct
15 Correct 132 ms 126196 KB Output is correct
16 Correct 136 ms 126220 KB Output is correct
17 Correct 123 ms 126220 KB Output is correct
18 Correct 132 ms 126268 KB Output is correct
19 Correct 134 ms 126268 KB Output is correct
20 Correct 130 ms 126268 KB Output is correct
21 Correct 118 ms 126268 KB Output is correct
22 Correct 134 ms 126484 KB Output is correct
23 Correct 130 ms 126484 KB Output is correct
24 Correct 140 ms 126484 KB Output is correct
25 Correct 146 ms 126484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 122 ms 125816 KB Output is correct
2 Correct 120 ms 125948 KB Output is correct
3 Correct 128 ms 125992 KB Output is correct
4 Correct 135 ms 125992 KB Output is correct
5 Correct 143 ms 126048 KB Output is correct
6 Correct 146 ms 126048 KB Output is correct
7 Correct 154 ms 126048 KB Output is correct
8 Correct 141 ms 126048 KB Output is correct
9 Correct 149 ms 126048 KB Output is correct
10 Correct 143 ms 126116 KB Output is correct
11 Correct 151 ms 126192 KB Output is correct
12 Correct 137 ms 126192 KB Output is correct
13 Correct 139 ms 126192 KB Output is correct
14 Correct 141 ms 126192 KB Output is correct
15 Correct 132 ms 126196 KB Output is correct
16 Correct 136 ms 126220 KB Output is correct
17 Correct 123 ms 126220 KB Output is correct
18 Correct 132 ms 126268 KB Output is correct
19 Correct 134 ms 126268 KB Output is correct
20 Correct 130 ms 126268 KB Output is correct
21 Correct 118 ms 126268 KB Output is correct
22 Correct 134 ms 126484 KB Output is correct
23 Correct 130 ms 126484 KB Output is correct
24 Correct 140 ms 126484 KB Output is correct
25 Correct 146 ms 126484 KB Output is correct
26 Correct 136 ms 126484 KB Output is correct
27 Correct 161 ms 128584 KB Output is correct
28 Correct 143 ms 128856 KB Output is correct
29 Incorrect 317 ms 130056 KB Output isn't correct
30 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 122 ms 125816 KB Output is correct
2 Correct 120 ms 125948 KB Output is correct
3 Correct 128 ms 125992 KB Output is correct
4 Correct 135 ms 125992 KB Output is correct
5 Correct 143 ms 126048 KB Output is correct
6 Correct 146 ms 126048 KB Output is correct
7 Correct 154 ms 126048 KB Output is correct
8 Correct 141 ms 126048 KB Output is correct
9 Correct 149 ms 126048 KB Output is correct
10 Correct 143 ms 126116 KB Output is correct
11 Correct 151 ms 126192 KB Output is correct
12 Correct 137 ms 126192 KB Output is correct
13 Correct 139 ms 126192 KB Output is correct
14 Correct 141 ms 126192 KB Output is correct
15 Correct 132 ms 126196 KB Output is correct
16 Correct 136 ms 126220 KB Output is correct
17 Correct 123 ms 126220 KB Output is correct
18 Correct 132 ms 126268 KB Output is correct
19 Correct 134 ms 126268 KB Output is correct
20 Correct 130 ms 126268 KB Output is correct
21 Correct 118 ms 126268 KB Output is correct
22 Correct 134 ms 126484 KB Output is correct
23 Correct 130 ms 126484 KB Output is correct
24 Correct 140 ms 126484 KB Output is correct
25 Correct 146 ms 126484 KB Output is correct
26 Correct 136 ms 126484 KB Output is correct
27 Correct 161 ms 128584 KB Output is correct
28 Correct 143 ms 128856 KB Output is correct
29 Incorrect 317 ms 130056 KB Output isn't correct
30 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 122 ms 125816 KB Output is correct
2 Correct 120 ms 125948 KB Output is correct
3 Correct 128 ms 125992 KB Output is correct
4 Correct 135 ms 125992 KB Output is correct
5 Correct 143 ms 126048 KB Output is correct
6 Correct 146 ms 126048 KB Output is correct
7 Correct 154 ms 126048 KB Output is correct
8 Correct 141 ms 126048 KB Output is correct
9 Correct 149 ms 126048 KB Output is correct
10 Correct 143 ms 126116 KB Output is correct
11 Correct 151 ms 126192 KB Output is correct
12 Correct 137 ms 126192 KB Output is correct
13 Correct 139 ms 126192 KB Output is correct
14 Correct 141 ms 126192 KB Output is correct
15 Correct 132 ms 126196 KB Output is correct
16 Correct 136 ms 126220 KB Output is correct
17 Correct 123 ms 126220 KB Output is correct
18 Correct 132 ms 126268 KB Output is correct
19 Correct 134 ms 126268 KB Output is correct
20 Correct 130 ms 126268 KB Output is correct
21 Correct 118 ms 126268 KB Output is correct
22 Correct 134 ms 126484 KB Output is correct
23 Correct 130 ms 126484 KB Output is correct
24 Correct 140 ms 126484 KB Output is correct
25 Correct 146 ms 126484 KB Output is correct
26 Correct 136 ms 126484 KB Output is correct
27 Correct 161 ms 128584 KB Output is correct
28 Correct 143 ms 128856 KB Output is correct
29 Incorrect 317 ms 130056 KB Output isn't correct
30 Halted 0 ms 0 KB -