Submission #603935

# Submission time Handle Problem Language Result Execution time Memory
603935 2022-07-24T13:31:28 Z yuto1115 Werewolf (IOI18_werewolf) C++17
49 / 100
4000 ms 43276 KB
#include "werewolf.h"
#include "bits/stdc++.h"
#define rep(i, n) for(ll i = 0; i < ll(n); ++i)
#define rep2(i, s, n) for(ll i = ll(s); i < ll(n); ++i)
#define rrep(i, n) for(ll i = ll(n)-1; i >= 0; --i)
#define pb push_back
#define eb emplace_back
#define all(a) a.begin(),a.end()
#define SZ(a) int(a.size())
using namespace std;
using ll = long long;
using P = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vi>;
using vl = vector<ll>;
using vvl = vector<vl>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vp = vector<P>;
using vvp = vector<vp>;
using vs = vector<string>;
const int inf = 1001001001;
const ll linf = 1001001001001001001;

template<class T>
bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return true;
    } else {
        return false;
    }
}

template<class T>
bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    } else {
        return false;
    }
}

// {min, max}
using S = P;
const S e = {inf, -inf};

S op(S a, S b) {
    return {min(a.first, b.first), max(a.second, b.second)};
}

class segtree {
    int n, log;
    vector<S> d;
    
    void update(int p) {
        assert(p < n);
        d[p] = op(d[2 * p], d[2 * p + 1]);
    }

public:
    segtree(const vector<S> &init = {}) {
        log = 0;
        while (1 << log < SZ(init)) ++log;
        n = 1 << log;
        d.assign(2 * n, e);
        rep(i, SZ(init)) d[n + i] = init[i];
        for (int i = n - 1; i >= 1; --i) update(i);
    }
    
    S prod(int l, int r) {
        assert(0 <= l and l <= r and r <= n);
        l += n, r += n;
        S res = e;
        while (l < r) {
            if (l & 1) res = op(res, d[l++]);
            if (r & 1) res = op(res, d[--r]);
            l >>= 1, r >>= 1;
        }
        return res;
    }
};

vi check_validity(int n, vi x, vi y, vi s, vi e, vi l, vi r) {
    int m = SZ(x), q = SZ(s);
    vi ans(q);
    vvi G(n);
    rep(i, m) {
        G[x[i]].pb(y[i]);
        G[y[i]].pb(x[i]);
    }
    bool is_line = (m == n - 1);
    rep(i, n) is_line &= SZ(G[i]) <= 2;
    if (is_line) {
        vi ls;
        auto dfs = [&](auto &dfs, int u, int p) -> void {
            ls.pb(u);
            for (int v: G[u]) {
                if (v == p) continue;
                dfs(dfs, v, u);
            }
        };
        rep(i, n) if (SZ(G[i]) == 1) {
                dfs(dfs, i, -1);
                break;
            }
        vi pos(n);
        rep(i, n) pos[ls[i]] = i;
        vp init(n);
        rep(i, n) init[i] = {ls[i], ls[i]};
        segtree st(init);
        rep(i, q) {
            P ok_s, ok_e;
            {
                int ok = pos[s[i]], ng = -1;
                auto f = [&](int x) -> bool {
                    return st.prod(x, pos[s[i]]).first >= l[i];
                };
                while (abs(ok - ng) > 1) {
                    int mid = (ok + ng) / 2;
                    if (f(mid)) ok = mid;
                    else ng = mid;
                }
                ok_s.first = ok;
            }
            {
                int ok = pos[s[i]] + 1, ng = n + 1;
                auto f = [&](int x) -> bool {
                    return st.prod(pos[s[i]], x).first >= l[i];
                };
                while (abs(ok - ng) > 1) {
                    int mid = (ok + ng) / 2;
                    if (f(mid)) ok = mid;
                    else ng = mid;
                }
                ok_s.second = ok;
            }
            {
                int ok = pos[e[i]], ng = -1;
                auto f = [&](int x) -> bool {
                    return st.prod(x, pos[e[i]]).second <= r[i];
                };
                while (abs(ok - ng) > 1) {
                    int mid = (ok + ng) / 2;
                    if (f(mid)) ok = mid;
                    else ng = mid;
                }
                ok_e.first = ok;
            }
            {
                int ok = pos[e[i]] + 1, ng = n + 1;
                auto f = [&](int x) -> bool {
                    return st.prod(pos[e[i]], x).second <= r[i];
                };
                while (abs(ok - ng) > 1) {
                    int mid = (ok + ng) / 2;
                    if (f(mid)) ok = mid;
                    else ng = mid;
                }
                ok_e.second = ok;
            }
            if (ok_s.second > ok_e.first and ok_e.second > ok_s.first) ans[i] = 1;
        }
    } else {
        rep(i, q) {
            vb ok_s(n), ok_e(n);
            {
                auto dfs = [&](auto &dfs, int u) -> void {
                    ok_s[u] = true;
                    for (int v: G[u]) {
                        if (v < l[i]) continue;
                        if (ok_s[v]) continue;
                        dfs(dfs, v);
                    }
                };
                dfs(dfs, s[i]);
            }
            {
                auto dfs = [&](auto &dfs, int u) -> void {
                    ok_e[u] = true;
                    for (int v: G[u]) {
                        if (v > r[i]) continue;
                        if (ok_e[v]) continue;
                        dfs(dfs, v);
                    }
                };
                dfs(dfs, e[i]);
            }
            rep(j, n) if (ok_s[j] and ok_e[j]) ans[i] = 1;
        }
    }
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 296 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 296 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 298 ms 724 KB Output is correct
11 Correct 195 ms 712 KB Output is correct
12 Correct 9 ms 852 KB Output is correct
13 Correct 312 ms 732 KB Output is correct
14 Correct 213 ms 700 KB Output is correct
15 Correct 249 ms 960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1192 ms 43252 KB Output is correct
2 Correct 1723 ms 43152 KB Output is correct
3 Correct 1724 ms 43144 KB Output is correct
4 Correct 1578 ms 43276 KB Output is correct
5 Correct 1573 ms 43148 KB Output is correct
6 Correct 1344 ms 43148 KB Output is correct
7 Correct 1538 ms 43148 KB Output is correct
8 Correct 1664 ms 43152 KB Output is correct
9 Correct 788 ms 43164 KB Output is correct
10 Correct 1140 ms 43232 KB Output is correct
11 Correct 1216 ms 43136 KB Output is correct
12 Correct 739 ms 43164 KB Output is correct
13 Correct 1634 ms 43244 KB Output is correct
14 Correct 1686 ms 43164 KB Output is correct
15 Correct 1644 ms 43072 KB Output is correct
16 Correct 1619 ms 43148 KB Output is correct
17 Correct 1562 ms 43148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 296 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 298 ms 724 KB Output is correct
11 Correct 195 ms 712 KB Output is correct
12 Correct 9 ms 852 KB Output is correct
13 Correct 312 ms 732 KB Output is correct
14 Correct 213 ms 700 KB Output is correct
15 Correct 249 ms 960 KB Output is correct
16 Correct 1192 ms 43252 KB Output is correct
17 Correct 1723 ms 43152 KB Output is correct
18 Correct 1724 ms 43144 KB Output is correct
19 Correct 1578 ms 43276 KB Output is correct
20 Correct 1573 ms 43148 KB Output is correct
21 Correct 1344 ms 43148 KB Output is correct
22 Correct 1538 ms 43148 KB Output is correct
23 Correct 1664 ms 43152 KB Output is correct
24 Correct 788 ms 43164 KB Output is correct
25 Correct 1140 ms 43232 KB Output is correct
26 Correct 1216 ms 43136 KB Output is correct
27 Correct 739 ms 43164 KB Output is correct
28 Correct 1634 ms 43244 KB Output is correct
29 Correct 1686 ms 43164 KB Output is correct
30 Correct 1644 ms 43072 KB Output is correct
31 Correct 1619 ms 43148 KB Output is correct
32 Correct 1562 ms 43148 KB Output is correct
33 Execution timed out 4057 ms 30204 KB Time limit exceeded
34 Halted 0 ms 0 KB -