This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <bits/stdc++.h>
#define err(args...) {}
#ifdef DEBUG
#include "_debug.cpp"
#endif
using namespace std;
using ll = long long;
using ld = long double;
template <typename T> using lim = numeric_limits<T>;
template <typename T> istream& operator>>(istream& is, vector<T>& a) { for(T& x : a) { is >> x; } return is; }
template <typename X, typename Y> istream& operator>>(istream& is, pair<X, Y>& p) { return is >> p.first >> p.second; }
template <typename T> struct wedge {
    int u, v; T w;
    int i; T dw;
    wedge reverse() const { return {v, u, w, i, dw}; }
    friend ostream& operator<<(ostream& os, const wedge& e) {
        return os << "{u: " << e.u << ", v: " << e.v << ", w: " << e.w << "}";
    }
};
template <bool Directed, typename TEdge, bool Index> struct graph {
    using EType = TEdge;
    vector<TEdge> edges;
    vector<vector<int>> adj;
    graph(int n) : adj(n + Index) {}
    graph(int n, int m) : graph(n) { edges.reserve(m << not Directed); }
    TEdge& operator()(int e) { return edges[e]; }
    vector<int>& operator[](int u) { return adj[u]; }
    int size() { return adj.size() - Index; }
    void append(int u, const TEdge& e) {
        adj[u].push_back(edges.size());
        edges.push_back(e);
    }
    void add_edge(const TEdge& e) {
        append(e.u, e);
        if(not Directed) append(e.v, e.reverse());
    }
};
template <bool Directed, typename T, bool Index>
pair<vector<T>, vector<int>> sssp(graph<Directed, wedge<T>, Index>& g, const vector<int>& s) {
    vector<int> vis(g.adj.size()), p(g.adj.size(), -1);
    vector<T> d(g.adj.size(), lim<T>::max());
    priority_queue<pair<T, int>> pq;
    for(int u : s) {
        pq.push({d[u] = 0, u});
    }
    while(not pq.empty()) {
        int u = pq.top().second; pq.pop();
        if(not vis[u]) {
            vis[u] = true;
            for(int e : g[u]) {
                if(not vis[g(e).v] and d[g(e).v] > d[u] + g(e).w) {
                    pq.push({-(d[g(e).v] = d[u] + g(e).w), g(p[g(e).v] = e).v});
                }
            }
        }
    }
    return {move(d), move(p)};
}
template <bool Directed, typename TEdge, bool Index>
vector<int> construct_path(graph<Directed, TEdge, Index>& g, const vector<int>& parent, int t) {
    vector<int> ans = {t};
    while(parent[ans.back()] != -1) {
        ans.push_back(g(parent[ans.back()]).u);
    }
    reverse(ans.begin(), ans.end());
    return ans;
}
template <typename TEdge, bool Index> pair<vector<int>, vector<vector<int>>> find_2eccs(graph<0, TEdge, Index>& g) {
    vector<int> vis(g.adj.size()), low(g.adj.size()), cut_edge(g.edges.size()), s;
    vector<vector<int>> _2eccs = {};
    int timer = 1;
    function<void(int, int)> dfs = [&](int u, int from) {
        vis[u] = low[u] = timer++;
        s.push_back(u);
        for(int e : g[u]) {
            if(not vis[g(e).v]) {
                dfs(g(e).v, e & ~1);
                if(vis[u] < low[g(e).v]) {
                    cut_edge[e] = cut_edge[e ^ 1] = true;
                    _2eccs.push_back(vector<int>());
                    do {
                        _2eccs.back().push_back(s.back()), s.pop_back();
                    } while(_2eccs.back().back() != g(e).v);
                }
                low[u] = min(low[u], low[g(e).v]);
            } else if((e & ~1) != from and vis[u] > vis[g(e).v]) {
                low[u] = min(low[u], vis[g(e).v]);
            }
        }
    };
    for(int u = Index; u < g.adj.size(); u++) if(not vis[u]) {
        dfs(u, -1);
        _2eccs.push_back(vector<int>());
        while(not s.empty()) {
            _2eccs.back().push_back(s.back()), s.pop_back();
        }
    }
    return {move(cut_edge), move(_2eccs)};
}
template <typename TEdge, bool Index> pair<vector<int>, graph<0, TEdge, Index>> build_bridge_tree(graph<0, TEdge, Index>& g,
const vector<int>& cut_edge, const vector<vector<int>>& _2eccs) {
    vector<int> _2ecc_id(g.adj.size());
    for(int i = 0; i < _2eccs.size(); i++) {
        for(int u : _2eccs[i]) {
            _2ecc_id[u] = i + Index;
        }
    }
    graph<0, TEdge, Index> bridge_tree(_2eccs.size());
    for(int e = 0; e < g.edges.size(); e++) {
        if(cut_edge[e] and g(e).u < g(e).v) {
            bridge_tree.add_edge({_2ecc_id[g(e).u], _2ecc_id[g(e).v]});
        }
    }
    return {move(_2ecc_id), move(bridge_tree)};
}
template <typename TEdge, bool Index> pair<vector<int>, graph<0, TEdge, Index>> build_bridge_tree(graph<0, TEdge, Index>& g) {
    auto [cut_edge, _2eccs] = find_2eccs(g);
    return build_bridge_tree(g, cut_edge, _2eccs);
}
template <typename T, typename Can> T bsearch(T L, T R, const Can& can, bool left_feasible = true) {
    static_assert(is_convertible<decltype(can), function<bool(T)>>::value);
    T& feasible = left_feasible ? L : R;
    T& infeasible = left_feasible ? R : L;
    while(R - L > 1) {
        T M = L + (R - L) / 2;
        (can(M) ? feasible : infeasible) = M;
    }
    return feasible;
}
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    int n, m;
    cin >> n >> m;
    graph<0, wedge<ll>, 1> g(n, m);
    int max_w = 0;
    for(int i = 0; i < m; i++) {
        int u, v, w;
        cin >> u >> v >> w;
        g.add_edge({u, v, w, i});
        max_w = max(max_w, w);
    }
    ll max_dw = 0;
    for(int i = m - 1; i >= 0; i--) {
        g.edges[2 * i].dw = g.edges[2 * i + 1].dw = max_dw;
        max_dw = max(max_dw, g.edges[2 * i].w);
    }
    auto [ds, ps] = sssp(g, {1});
    auto [dt, pt] = sssp(g, {n});
    cout << ds[n] + bsearch(0, max_w + 1, [&, &ds=ds, &dt=dt](int delta) {
        graph<0, wedge<ll>, 1> sp_dag(n);
        for(int ii = 0; ii < g.edges.size(); ii += 2) {
            auto [u, v, w, i, dw] = g.edges[ii];
            if(min(ds[u] + w + dt[v], ds[v] + w + dt[u]) < ds[n] + delta) {
                sp_dag.add_edge({u, v, w, i, dw});
            }
        }
        auto [cut_edge, _2eccs] = find_2eccs(sp_dag);
        auto [_2ecc_id, bridge_tree] = build_bridge_tree(sp_dag, cut_edge, _2eccs);
        auto [d, p] = sssp(bridge_tree, {_2ecc_id[1]});
        auto path = construct_path(bridge_tree, p, {_2ecc_id[n]});
        set<pair<int, int>> on_path;
        for(int i = 1; i < path.size(); i++) {
            on_path.insert({path[i - 1], path[i]});
        }
        bool increase = false;
        for(int ii = 0; ii < sp_dag.edges.size(); ii++) {
            auto [u, v, w, i, dw] = sp_dag.edges[ii];
            increase |= cut_edge[ii]
                and on_path.count({_2ecc_id[u], _2ecc_id[v]})
                and ds[u] + w + dw + dt[v] >= ds[n] + delta;
        }
        return increase;
    }) << endl;
    return 0;
}
Compilation message (stderr)
Aesthetic.cpp: In lambda function:
Aesthetic.cpp:152:28: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<wedge<long long int>, std::allocator<wedge<long long int> > >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  152 |         for(int ii = 0; ii < g.edges.size(); ii += 2) {
      |                         ~~~^~~~~~~~~~~~~~~~
Aesthetic.cpp:163:26: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  163 |         for(int i = 1; i < path.size(); i++) {
      |                        ~~^~~~~~~~~~~~~
Aesthetic.cpp:167:28: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<wedge<long long int>, std::allocator<wedge<long long int> > >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  167 |         for(int ii = 0; ii < sp_dag.edges.size(); ii++) {
      |                         ~~~^~~~~~~~~~~~~~~~~~~~~
Aesthetic.cpp: In instantiation of 'std::pair<std::vector<int>, std::vector<std::vector<int> > > find_2eccs(graph<false, TEdge, Index>&) [with TEdge = wedge<long long int>; bool Index = true]':
Aesthetic.cpp:158:52:   required from here
Aesthetic.cpp:91:26: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   91 |     for(int u = Index; u < g.adj.size(); u++) if(not vis[u]) {
      |                        ~~^~~~~~~~~~~~~~
Aesthetic.cpp: In instantiation of 'std::pair<std::vector<int>, graph<false, TEdge, Index> > build_bridge_tree(graph<false, TEdge, Index>&, const std::vector<int>&, const std::vector<std::vector<int> >&) [with TEdge = wedge<long long int>; bool Index = true]':
Aesthetic.cpp:159:82:   required from here
Aesthetic.cpp:103:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::vector<int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  103 |     for(int i = 0; i < _2eccs.size(); i++) {
      |                    ~~^~~~~~~~~~~~~~~
Aesthetic.cpp:109:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<wedge<long long int>, std::allocator<wedge<long long int> > >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  109 |     for(int e = 0; e < g.edges.size(); e++) {
      |                    ~~^~~~~~~~~~~~~~~~| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... | 
| # | Verdict | Execution time | Memory | Grader output | 
|---|
| Fetching results... |