Submission #601251

#TimeUsernameProblemLanguageResultExecution timeMemory
601251PetrStar Trek (CEOI20_startrek)C++17
100 / 100
155 ms30708 KiB
#include<bits/stdc++.h> //#include<iostream> //#include<vector> using namespace std; #define int long long const int mod=1e9+7; // Using a modint type instead of inserting "% mod" in appropriate // places makes it easier to avoid both negative numbers and overflows. struct modint { int val; modint() : val(0) {} modint(int val_) : val(val_ % mod) { if (val < 0) val += mod; } }; modint operator+(modint a, modint b) { return a.val + b.val; } modint operator-(modint a, modint b) { return a.val - b.val; } modint operator*(modint a, modint b) { return a.val * b.val; } // Fixed-size arrays are nicer than vectors in that you don't // need to resize(), and they also work much faster, so if we can // use them, it's typically a good idea. using vect = array<modint, 2>; using matrix = array<vect, 2>; matrix unit() { // Note that " = {};" is important to zero-initialize std::array. matrix res = {}; for (int i = 0; i < res.size(); ++i) res[i][i] = 1; return res; } vect mul(matrix a, vect b) { vect res = {}; for (int i = 0; i < res.size(); ++i) { for (int j = 0; j < res.size(); ++j) { res[i] = res[i] + a[i][j] * b[j]; } } return res; } matrix multiply(matrix a, matrix b) { matrix res = {}; for (int i = 0; i < res.size(); ++i) { for (int j = 0; j < res.size(); ++j) { for (int k = 0; k < res.size(); ++k) { res[i][j] = res[i][j] + a[i][k] * b[k][j]; } } } return res; } matrix power(matrix a, int e){ if(e==0){ return unit(); } matrix res=power(a, e/2); res=multiply(res, res); if(e%2==1){ res=multiply(res, a); } return res; } bool dfs_win(int v, int peid, const vector<vector<int> >& adi, const vector<int>& dest, vector<int>& vertex_status, vector<vector<int>>& red_neighbors){ if (vertex_status[v] == -2) { vertex_status[v] = peid; for(auto eid: adi[v]){ if (eid == peid) continue; auto u = dest[eid]; if(!dfs_win(u, eid ^ 1, adi, dest, vertex_status, red_neighbors)){ red_neighbors[v].push_back(eid); } } } else { if (vertex_status[v] >= 0 && vertex_status[v] != peid) { auto eid = vertex_status[v]; auto u = dest[eid]; if(!dfs_win(u, eid ^ 1, adi, dest, vertex_status, red_neighbors)){ red_neighbors[v].push_back(eid); } vertex_status[v] = -1; } } if (vertex_status[v] == peid) { return red_neighbors[v].size() > 0; } else { if (red_neighbors[v].size() >= 2) return true; if (red_neighbors[v].size() == 0) return false; return red_neighbors[v][0] != peid; } } int dfs_redforce(int v, int peid, const vector<vector<int> >& adi, const vector<int>& dest, const vector<vector<int>>& red_neighbors, vector<int>& vertex_status, vector<int>& redf, vector<int>& summe){ bool is_green; if (red_neighbors[v].size() >= 2) is_green = true; else if (red_neighbors[v].size() == 0) is_green = false; else is_green = red_neighbors[v][0] != peid; if(vertex_status[v]==-2){ for(auto eid: adi[v]){ if(eid==peid) { continue; } auto u = dest[eid]; redf[eid]=dfs_redforce(u, eid ^ 1, adi, dest, red_neighbors, vertex_status, redf, summe); summe[v]+=redf[eid]; } vertex_status[v]=peid; } else{ if(vertex_status[v]>=0 && vertex_status[v]!=peid){ auto eid = vertex_status[v]; auto u = dest[eid]; redf[eid]=dfs_redforce(u, eid ^ 1, adi, dest, red_neighbors, vertex_status, redf, summe); summe[v]+=redf[eid]; vertex_status[v]=-1; } } int redforce = 0; if(!is_green){ //red redforce++; redforce+=summe[v]; if (vertex_status[v] == -1 && peid != -1) { redforce-=redf[peid]; } } else { //green with one red child bool needed=red_neighbors[v].size()<3; int u=red_neighbors[v][0]; if(red_neighbors[v].size()==2){ if(red_neighbors[v][0]==peid) u=red_neighbors[v][1]; else if(red_neighbors[v][1]!=peid) needed=false; } if (needed) { redforce+=redf[u]; } } return redforce; } signed main(){ ios_base::sync_with_stdio(false); cin.tie(0); //freopen("input1.txt", "r", stdin); //freopen("out.txt", "w", stdout); int n, d; cin >> n >> d; // Now we store edge numbers here, and the target of the edge in "dest" array. // This allows us to avoid unordered_map. We also maintain the property // that the reverse to the edge x is the edge x^1. vector<vector<int> > adi(n); vector<int> dest(2 * (n - 1)); for(int i=0; i<n-1; i++){ int a,b; cin >> a >> b; adi[a-1].push_back(2 * i); dest[2 * i] = b - 1; adi[b-1].push_back(2 * i + 1); dest[2 * i + 1] = a - 1; } int G=0; int R=0; int g1=0; int r1=0; int c=0; vector<int> vertex_status(n, -2); vector<int> vertex_status2(n, -2); vector<vector<int>> red_neighbors(n); vector<int> redf(2 * (n - 1), 0); vector<int> summe(n, 0); for(int i=n-1; i>=0; i--){ bool we_win=dfs_win(i, -1, adi, dest, vertex_status, red_neighbors); int redforce=dfs_redforce(i, -1, adi, dest, red_neighbors, vertex_status2, redf, summe); if(we_win){ c++; g1=n; r1=n-redforce; } else{ g1=0; r1=redforce; } G+=g1; R+=r1; } matrix m1 = {}; m1[0][0] = g1; m1[0][1] = r1; m1[1][0] = n - g1; // This value is not important since we only print ans[0], but in case we also wanted ans[1] this would be correct. m1[1][1] = n - r1; // This value is not important since we only print ans[0], but in case we also wanted ans[1] this would be correct. matrix m2 = {}; m2[0][0] = G; m2[0][1] = R; m2[1][0] = n * n - G; m2[1][1] = n * n - R; matrix p=power(m2, d-1); vect v=mul(p, {c, n-c}); vect ans=mul(m1, v); cout << ans[0].val << "\n"; }

Compilation message (stderr)

startrek.cpp: In function 'matrix unit()':
startrek.cpp:42:21: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::array<std::array<modint, 2>, 2>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   42 |   for (int i = 0; i < res.size(); ++i) res[i][i] = 1;
      |                   ~~^~~~~~~~~~~~
startrek.cpp: In function 'vect mul(matrix, vect)':
startrek.cpp:48:21: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::array<modint, 2>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   48 |   for (int i = 0; i < res.size(); ++i) {
      |                   ~~^~~~~~~~~~~~
startrek.cpp:49:23: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::array<modint, 2>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   49 |     for (int j = 0; j < res.size(); ++j) {
      |                     ~~^~~~~~~~~~~~
startrek.cpp: In function 'matrix multiply(matrix, matrix)':
startrek.cpp:58:21: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::array<std::array<modint, 2>, 2>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   58 |   for (int i = 0; i < res.size(); ++i) {
      |                   ~~^~~~~~~~~~~~
startrek.cpp:59:23: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::array<std::array<modint, 2>, 2>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   59 |     for (int j = 0; j < res.size(); ++j) {
      |                     ~~^~~~~~~~~~~~
startrek.cpp:60:25: warning: comparison of integer expressions of different signedness: 'long long int' and 'std::array<std::array<modint, 2>, 2>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   60 |       for (int k = 0; k < res.size(); ++k) {
      |                       ~~^~~~~~~~~~~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...