Submission #600930

# Submission time Handle Problem Language Result Execution time Memory
600930 2022-07-21T09:17:27 Z cheissmart Shortcut (IOI16_shortcut) C++14
0 / 100
1 ms 340 KB
// 花啊啊啊啊啊啊啊啊啊啊啊啊
#include "shortcut.h"
#pragma GCC optimize("O3", "no-stack-protector")
#include <bits/stdc++.h>
#define IO_OP std::ios::sync_with_stdio(0); std::cin.tie(0);
#define F first
#define S second
#define V vector
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define SZ(v) int((v).size())
#define ALL(v) (v).begin(), (v).end()
 
using namespace std;
 
typedef long long ll;
typedef pair<int, int> pi;
typedef V<int> vi;
 
const int INF = 1e9 + 7, N = 1e6 + 7;
const ll oo = 1e18;
 
int papa[20][N];
int pbpb[20][N];
int pa[N], pb[N], aux[N];
ll a[N], b[N], pos[N];
 
ll find_shortcut(int n, vi l, vi d, int c) {
    assert(SZ(l) == n - 1);
    assert(SZ(d) == n);
    for(int i = 1; i < n; i++)
        pos[i] = l[i - 1] + pos[i - 1];
 
    for(int i = 0; i < n; i++)
        a[i] = pos[i] + d[i];
    for(int i = 0; i < n; i++)
        b[i] = pos[i] - d[i];
 
    iota(pa, pa + n, 0);
    iota(pb, pb + n, 0);
    sort(pa, pa + n, [&] (int x, int y) {
        return a[x] < a[y];
    });
    sort(pb, pb + n, [&] (int x, int y) {
        return b[x] < b[y];
    });

    auto ok = [&] (ll k) {
        for(int i = 0; i < n; i++)
            b[i] = k + pos[i] - d[i];
 
        ll lb_sum = -oo, rb_sum = oo;
        ll lb_dif = -oo, rb_dif = oo;
        auto add_condition = [&] (int i, int j) {
            // assert(i < j && pos[j] - pos[i] + d[i] + d[j] > k);
            ll dd = k - d[i] - d[j] - c;
            lb_sum = max(lb_sum, pos[i] + pos[j] - dd);
            rb_sum = min(rb_sum, pos[i] + pos[j] + dd);
            lb_dif = max(lb_dif, pos[i] - pos[j] - dd);
            rb_dif = min(rb_dif, pos[i] - pos[j] + dd);
        };
        // function<void(int, int, int)> cdq = [&] (int l, int r, int depth) {
        //     if(r - l == 1) return;
        //     int m = (l + r) / 2;
        //     cdq(l, m, depth + 1), cdq(m, r, depth + 1);
        //     int mxj = -1, mnj = -1;
        //     #define pa papa[depth]
        //     #define pb pbpb[depth]
        //     for(int i = m - 1, j = r - 1; i >= l; i--) {
        //         while(j >= m && a[pa[j]] > b[pb[i]]) {
        //             int jj = pa[j];
        //             if(mxj == -1 || pos[jj] + d[jj] > pos[mxj] + d[mxj])
        //                 mxj = jj;
        //             if(mnj == -1 || pos[jj] - d[jj] < pos[mnj] - d[mnj])
        //                 mnj = jj;
        //             j--;
        //         }
        //         if(mxj != -1) add_condition(pb[i], mxj);
        //         if(mnj != -1) add_condition(pb[i], mnj);
        //     }
        // };
        // cdq(0, n, 0);

        int mxj = -1, mnj = -1;
        for(int i = n - 1, j = n - 1; i >= 0; i--) {
            while(j >= 0 && a[pa[j]] > b[pb[i]]) {
                int jj = pa[j];
                if(mxj == -1 || pos[jj] + d[jj] > pos[mxj] + d[mxj])
                    mxj = jj;
                if(mnj == -1 || pos[jj] - d[jj] < pos[mnj] - d[mnj])
                    mnj = jj;
                j--;
            }
            if(mxj != -1) add_condition(pb[i], mxj);
            if(mnj != -1) add_condition(pb[i], mnj);
        }
        if(lb_sum > rb_sum) return false;
        if(lb_dif > rb_dif) return false;
        for(int i = 0; i < n - 1; i++) {
            ll lb = max(lb_sum - pos[i], pos[i] - rb_dif), rb = min(rb_sum - pos[i], pos[i] - lb_dif);
            if(lb <= rb) {
                int j = lower_bound(pos + i + 1, pos + n, lb) - pos;
                if(j < n && pos[j] <= rb) {
                    // assert(lb_sum <= pos[i] + pos[j] && pos[i] + pos[j] <= rb_sum);
                    // assert(lb_dif <= pos[i] - pos[j] && pos[i] - pos[j] <= rb_dif);
                    return true;
                }
            }
        }
        return false;
    };
 
    ll lb = pos[n - 1] / 3, rb = 1e15;
    while(lb <= rb) {
        ll mb = (lb + rb) / 2;
        if(ok(mb)) rb = mb - 1;
        else lb = mb + 1;
    }
    return lb;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB n = 4, 80 is a correct answer
2 Correct 0 ms 212 KB n = 9, 110 is a correct answer
3 Correct 0 ms 340 KB n = 4, 21 is a correct answer
4 Correct 0 ms 212 KB n = 3, 4 is a correct answer
5 Incorrect 0 ms 340 KB n = 2, incorrect answer: jury 62 vs contestant 72
6 Halted 0 ms 0 KB -