# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
593161 |
2022-07-10T13:59:03 Z |
jiahng |
Semafor (COI20_semafor) |
C++14 |
|
101 ms |
932 KB |
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define int ll
typedef pair<int,ll> pi;
typedef vector <int> vi;
typedef vector <pi> vpi;
typedef pair<pi, ll> pii;
typedef set <ll> si;
typedef long double ld;
#define f first
#define s second
#define mp make_pair
#define FOR(i,s,e) for(int i=s;i<=int(e);++i)
#define DEC(i,s,e) for(int i=s;i>=int(e);--i)
#define pb push_back
#define all(x) (x).begin(), (x).end()
#define lbd(x, y) lower_bound(all(x), y)
#define ubd(x, y) upper_bound(all(x), y)
#define aFOR(i,x) for (auto i: x)
#define mem(x,i) memset(x,i,sizeof x)
#define fast ios_base::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define maxn 200100
#define INF (ll)1e14
#define MOD 1000000007
#define getchar_unlocked _getchar_nolock
int M,N,K,X;
int numbers[10] = {0b01010, 0b01000, 0b10010,0b11100,0b01001,0b10101,0b00110, 0b11000, 0b10111, 0b11101};
int num[10]; // the number of ways to do K operations and flip x bits
struct Matrix{
int mat[100][100];
Matrix(){
FOR(i,0,99) FOR(j,0,99) mat[i][j] = 0;
}
Matrix operator*(Matrix mat2){
Matrix new_mat = Matrix();
FOR(i,0,99) FOR(j,0,99) FOR(k,0,99) (new_mat.mat[i][j] += (mat[i][k] * mat2.mat[k][j]) % MOD) %= MOD;
return new_mat;
}
void print(int N){
FOR(i,0,N-1){
FOR(j,0,N-1) cout << mat[i][j] << ' ';
cout << '\n';
}
}
};
Matrix qexp(Matrix mat, int b){
Matrix ans = Matrix();
FOR(i,0,99) ans.mat[i][i] = 1;
while (b){
if (b&1) ans = ans * mat;
mat = mat * mat;
b >>= 1;
}
return ans;
}
int32_t main(){
fast;
cin >> M >> N >> K >> X;
Matrix mat1 = Matrix();
FOR(i,0,5*M-1){
if (i > 0) mat1.mat[i][i-1] = i;
if (i < 5*M-1) mat1.mat[i][i+1] = 5*M-i;
}
mat1.print(5*M);
cout << '\n';
Matrix mat2 = qexp(mat1, K);
mat2.print(5*M);
FOR(i,0,5*M-1) num[i] = mat2.mat[i][0];
Matrix adj = Matrix();
FOR(i,0,9) FOR(j,0,9){
adj.mat[i][j] = num[__builtin_popcount(numbers[i] ^ numbers[j])];
}
adj.print(10);
adj = qexp(adj, N/K);
// N%K operations left
Matrix mat3 = qexp(mat1, N%K);
FOR(i,0,9){ //final state
int numdiff = __builtin_popcount(numbers[i] ^ numbers[X]);
int ans = 0;
FOR(j,0,9) (ans += mat3.mat[j][numdiff]) %= MOD;
cout << (ans * adj.mat[X][i]) << '\n';
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
18 ms |
852 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
18 ms |
852 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
35 ms |
924 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
101 ms |
932 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
101 ms |
932 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
35 ms |
924 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |