Submission #59161

# Submission time Handle Problem Language Result Execution time Memory
59161 2018-07-20T21:20:13 Z Benq Pipes (BOI13_pipes) C++14
100 / 100
495 ms 22880 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>

using namespace std;
using namespace __gnu_pbds;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)

#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()

const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;

ll N,M,in[MX],c[MX],ans[MX];
bool done[MX];
vpi adj[MX];

template<int SZ> struct DSU {
    int par[SZ], sz[SZ], val[SZ];
    DSU() {
        F0R(i,SZ) par[i] = i, sz[i] = 1;
    }
    
    int get(int x) { // path compression
    	if (par[x] != x) par[x] = get(par[x]);
    	return par[x];
    }
    
    bool unite(int x, int y) { // union-by-rank
    	x = get(x), y = get(y);
    	if (x == y) {
    	    val[x] ++;
    	    return 0;
    	}
    	if (sz[x] < sz[y]) swap(x,y);
    	val[x] ++;
    	sz[x] += sz[y], val[x] += val[y], par[y] = x;
    	return 1;
    }
};

DSU<MX> D;

vpi v;

void genCyc(int pre, int cur) {
    done[cur] = 1;
    for (auto a: adj[cur]) if (a.f != pre && !done[a.f]) {
        v.pb(a);
        genCyc(cur,a.f);
    }
}

ll cum[2*MX];

void solveCyc(int x) {
    v.clear(); 
    int pre = -1;
    for (auto y: adj[x]) if (!done[y.f]) {
        v.pb({x,y.s});
        pre = y.f;
        break;
    }
    genCyc(pre,x);
    if (sz(v) % 2 == 0) {
        cout << 0;
        exit(0);
    }
    ll sum = 0;
    for (auto a: v) sum += c[a.f];
    sum /= 2;
    
    F0R(i,2*sz(v)) {
        cum[i] = c[v[2*i%sz(v)].f];
        if (i) cum[i] += cum[i-1];
    }
    
    // v[1].s: {v[0].f,v[1].f}
    // v[3].s: {v[2].f,v[3].f}
    // 0: sum-(2+4+6+...+(N-1))
    F0R(i,sz(v)) {
        ans[v[i].s] = sum;
        int x = i+1; if (x&1) x += sz(v);
        // i+1, i+3, ..., i+N-2
        ans[v[i].s] += cum[x/2-1];
        ans[v[i].s] -= cum[(x+sz(v)-3)/2];
        // cout << "AH " << x << " " << sum << " " << cum[x/2-1] << " " << cum[(x+N-3)/2] << " " << ans[v[i].s] << "\n";
    }
    
    // cout << sz(v);
    // for (auto a: v) cout << a.f << " " << a.s << "\n";
}

int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> N >> M;
    FOR(i,1,N+1) cin >> c[i];
    FOR(i,1,M+1) {
        int a,b; cin >> a >> b;
        adj[a].pb({b,i}), adj[b].pb({a,i});
        D.unite(a,b);
        in[a] ++, in[b] ++;
    }
    FOR(i,1,N+1) if (D.val[D.get(i)] > D.sz[D.get(i)]) {
        cout << 0;
        exit(0);
    }
    queue<int> q;
    FOR(i,1,N+1) if (in[i] == 1) q.push(i);
    while (sz(q)) {
        int x = q.front(); q.pop(); done[x] = 1;
        if (in[x] == 0) {
            // cout << x << "\n";
            continue;
        }
        for (auto a: adj[x]) if (!done[a.f]) {
            ans[a.s] = c[x];
            c[a.f] -= ans[a.s];
            in[a.f] --;
            if (in[a.f] == 1) q.push(a.f);
        }
    }
    FOR(i,1,N+1) if (!done[i]) {
        if (in[i] == 0) {
            done[i] = 1;
        } else solveCyc(i);
    }
    FOR(i,1,M+1) cout << 2*ans[i] << "\n";
}

/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
*/
# Verdict Execution time Memory Grader output
1 Correct 7 ms 3448 KB Output is correct
2 Correct 6 ms 3696 KB Output is correct
3 Correct 8 ms 3860 KB Output is correct
4 Correct 101 ms 12404 KB Output is correct
5 Correct 5 ms 12404 KB Output is correct
6 Correct 5 ms 12404 KB Output is correct
7 Correct 5 ms 12404 KB Output is correct
8 Correct 5 ms 12404 KB Output is correct
9 Correct 7 ms 12404 KB Output is correct
10 Correct 7 ms 12404 KB Output is correct
11 Correct 6 ms 12404 KB Output is correct
12 Correct 7 ms 12404 KB Output is correct
13 Correct 69 ms 12404 KB Output is correct
14 Correct 85 ms 13492 KB Output is correct
15 Correct 94 ms 13884 KB Output is correct
16 Correct 133 ms 13884 KB Output is correct
17 Correct 127 ms 14416 KB Output is correct
18 Correct 122 ms 14416 KB Output is correct
19 Correct 141 ms 14416 KB Output is correct
20 Correct 5 ms 14416 KB Output is correct
21 Correct 5 ms 14416 KB Output is correct
22 Correct 152 ms 14416 KB Output is correct
23 Correct 77 ms 14416 KB Output is correct
24 Correct 89 ms 14416 KB Output is correct
25 Correct 117 ms 14416 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 14416 KB Output is correct
2 Correct 5 ms 14416 KB Output is correct
3 Correct 105 ms 16540 KB Output is correct
4 Correct 96 ms 16540 KB Output is correct
5 Correct 65 ms 16540 KB Output is correct
6 Correct 495 ms 22820 KB Output is correct
7 Correct 6 ms 22820 KB Output is correct
8 Correct 6 ms 22820 KB Output is correct
9 Correct 7 ms 22820 KB Output is correct
10 Correct 6 ms 22820 KB Output is correct
11 Correct 5 ms 22820 KB Output is correct
12 Correct 5 ms 22820 KB Output is correct
13 Correct 6 ms 22820 KB Output is correct
14 Correct 5 ms 22820 KB Output is correct
15 Correct 6 ms 22820 KB Output is correct
16 Correct 6 ms 22820 KB Output is correct
17 Correct 6 ms 22820 KB Output is correct
18 Correct 7 ms 22820 KB Output is correct
19 Correct 6 ms 22820 KB Output is correct
20 Correct 6 ms 22820 KB Output is correct
21 Correct 7 ms 22820 KB Output is correct
22 Correct 7 ms 22820 KB Output is correct
23 Correct 120 ms 22820 KB Output is correct
24 Correct 159 ms 22820 KB Output is correct
25 Correct 160 ms 22820 KB Output is correct
26 Correct 106 ms 22820 KB Output is correct
27 Correct 103 ms 22820 KB Output is correct
28 Correct 108 ms 22820 KB Output is correct
29 Correct 221 ms 22820 KB Output is correct
30 Correct 153 ms 22820 KB Output is correct
31 Correct 164 ms 22820 KB Output is correct
32 Correct 97 ms 22820 KB Output is correct
33 Correct 88 ms 22820 KB Output is correct
34 Correct 98 ms 22820 KB Output is correct
35 Correct 120 ms 22820 KB Output is correct
36 Correct 106 ms 22820 KB Output is correct
37 Correct 412 ms 22880 KB Output is correct
38 Correct 149 ms 22880 KB Output is correct
39 Correct 133 ms 22880 KB Output is correct
40 Correct 156 ms 22880 KB Output is correct
41 Correct 142 ms 22880 KB Output is correct
42 Correct 107 ms 22880 KB Output is correct
43 Correct 133 ms 22880 KB Output is correct
44 Correct 138 ms 22880 KB Output is correct
45 Correct 279 ms 22880 KB Output is correct
46 Correct 147 ms 22880 KB Output is correct
47 Correct 96 ms 22880 KB Output is correct
48 Correct 99 ms 22880 KB Output is correct
49 Correct 77 ms 22880 KB Output is correct
50 Correct 78 ms 22880 KB Output is correct
51 Correct 92 ms 22880 KB Output is correct
52 Correct 72 ms 22880 KB Output is correct
53 Correct 317 ms 22880 KB Output is correct
54 Correct 159 ms 22880 KB Output is correct