Submission #58684

# Submission time Handle Problem Language Result Execution time Memory
58684 2018-07-18T20:24:12 Z ksun48 Wild Boar (JOI18_wild_boar) C++14
62 / 100
18000 ms 368076 KB
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
 
const LL MAXD = (1LL << 60LL);
int n, m, t, l;
vector<int> a, b;
vector<LL> c;
typedef pair<LL, pair<int,int> > Path;
typedef vector<Path> OptPaths;
int unused = 3000;
 
Path new_unused(){
	Path x = {MAXD, {unused,unused}};
	//unused ++;
	return x;
}
 
Path alt_path(pair<int,int> avoid, OptPaths& paths){
	Path f = new_unused();
	for(Path x : paths){
		if(x.second.first != avoid.first && x.second.second != avoid.second){
			if(x.first < f.first){
				f = x;
			}
		}
	}
	return f;
}
 
Path alt_path2(pair<int,int> avoid, OptPaths& paths){
	Path f = new_unused();
	for(Path x : paths){
		if(x.second.first != avoid.first || x.second.second != avoid.second){
			if(x.first < f.first){
				f = x;
			}
		}
	}
	return f;
}
 
 
int np = 0;
OptPaths process(OptPaths cand){
	np++;
	OptPaths edges;
 
	if(cand.size() == 0) return edges;
 
	edges.push_back(alt_path({-1, -1}, cand));
	pair<int,int> x = edges[0].second;
	if(edges[0].first >= MAXD) return edges;
 
	edges.push_back(alt_path2(x, cand));
	pair<int,int> y = edges[1].second;
	if(edges[1].first >= MAXD) return edges;
 
	if(x.first != y.first && x.second != y.second){
		edges.push_back(alt_path({x.first, y.second}, cand));
		edges.push_back(alt_path({y.first, x.second}, cand));
	} else if(x.first == y.first){
		Path q = alt_path({x.first, -1}, cand);
		edges.push_back(q);
		edges.push_back(alt_path({x.first, q.second.second}, cand));
	} else if(x.second == y.second){
		Path q = alt_path({-1, x.second}, cand);
		edges.push_back(q);
		edges.push_back(alt_path({q.second.first, x.second}, cand));
	}
	sort(edges.begin(), edges.end());
	while(edges.size() > 0 && edges[edges.size() - 1].first >= MAXD) edges.pop_back();
	return edges;
}
 
OptPaths join(OptPaths a, OptPaths b){
	OptPaths cand;
	for(auto x : a){
		for(auto y : b){
			if(x.second.second != y.second.first){
				cand.push_back({min(x.first + y.first, MAXD), {x.second.first, y.second.second}});
			}
		}
	}
	return cand;
}
 
vector<vector<OptPaths> > cachedpaths;
 
void compute_paths2(int s){
	// start bellman-ford at s
	vector<OptPaths> sssp(n);
	for(int id = 0; id < m; id++){
		if(a[id] != s && b[id] != s) continue;
		if(b[id] == s) swap(a[id], b[id]);
		// all paths starting with edge id
 
		int st = b[id];
		vector<vector<int> > adj(n);
		for(int i = 0; i < m; i++){
			if(a[i] != s && b[i] != s){
				adj[a[i]].push_back(i);
				adj[b[i]].push_back(i);
			}
		}
		int vis[n][2];
		pair<LL,int> dist[n][2];
		int changed[n];
		for(int i = 0; i < n; i++){
			changed[i] = 0;
			vis[i][0] = vis[i][1] = 0;
			dist[i][0] = {MAXD, -2};
			dist[i][1] = {MAXD, -1};
		}
		dist[st][0] = {c[id], id};
		dist[st][1] = {MAXD, -1};
		changed[st] = 1;
 
		set<pair<LL,int> > stuff;
		for(int i = 0; i < n; i++){
			if(i != s){
				stuff.insert({dist[i][0].first, (i << 1)});
			}
		}
		while(!stuff.empty()){
			pair<LL,int> x = *stuff.begin();
			stuff.erase(stuff.begin());
			int v = x.second >> 1;
			int idx = x.second & 1;
			vis[v][idx] = 1;
			if(!changed[v]) continue;
			changed[v] = 0;
			for(auto i : adj[v]){
				if(b[i] == v){
					swap(a[i], b[i]);
				}
				int w = b[i];
				if(vis[w][0] && vis[w][1]) continue;
				LL d = 0;
				if(dist[v][0].second != i){
					d = min(MAXD, dist[v][0].first + c[i]);
				} else {
					d = min(MAXD, dist[v][1].first + c[i]);
				}
				for(int j = 0; j < 2; j++){
					if(!vis[w][j]){
						stuff.erase({dist[w][j].first, (w << 1) ^ j});
						break;
					}
				}
				if(dist[w][0].second == i){
					if(d < dist[w][0].first){
						changed[w] = 1;
						dist[w][0] = {d, i};
					}
				} else if(dist[w][1].second == i){
					if(d < dist[w][1].first){
						changed[w] = 1;
						dist[w][1] = {d, i};
					}
				} else if(d < dist[w][1].first){
					changed[w] = 1;
					dist[w][1] = {d, i};
				}
				if(dist[w][0] > dist[w][1]) swap(dist[w][0], dist[w][1]);
				for(int j = 0; j < 2; j++){
					if(!vis[w][j]){
						stuff.insert({dist[w][j].first, (w << 1) ^ j});
						break;
					}
				}
			}
		}
		for(int i = 0; i < n; i++){
			if(i == s) continue;
			sssp[i].push_back({dist[i][0].first,{id,dist[i][0].second}});
			sssp[i].push_back({dist[i][1].first,{id,dist[i][1].second}});
		}
	}
	for(int i = 0; i < n; i++){
		if(i == s) continue;
		sssp[i] = process(sssp[i]);
	}
	cachedpaths[s] = sssp;
}
 
struct node {
	node *l, *r;
	int lidx, ridx;
	OptPaths paths;
};
 
node * build(int l, int r){
	node * f = new node();
	f->lidx = l;
	f->ridx = r;
	if(l == r){
		f->l = f->r = NULL;
	} else {
		int m = (l + r) / 2;
		f->l = build(l, m);
		f->r = build(m + 1, r);
	}
	return f;
}
 
void upd(node * v, int loc, OptPaths q){
	if(v == NULL) return;
	if(v->ridx < loc || v->lidx > loc) return;
	if(v->lidx == v->ridx){
		v->paths = q;
	} else {
		upd(v->l, loc, q);
		upd(v->r, loc, q);
		v->paths = process(join(v->l->paths, v->r->paths));
	}
}
 
int main(){
	cin.sync_with_stdio(0); cin.tie(0);
	cin >> n >> m >> t >> l;
	cachedpaths.resize(n);
	a.resize(m); b.resize(m); c.resize(m);
	for(int i = 0; i < m; i++){
		cin >> a[i] >> b[i] >> c[i];
		a[i]--; b[i]--;
	}
	vector<int> plan(l);
	vector<int> need(n, 0);
	for(int i = 0; i < l; i++){
		cin >> plan[i];
		plan[i]--;
		need[plan[i]] = 1;
	}
	vector<pair<int,int> > updates(t);
	for(int i = 0; i < t; i++){
		cin >> updates[i].first >> updates[i].second;
		updates[i].first--; updates[i].second--;
		need[updates[i].second] = 1;
	}	
	for(int i = 0; i < n; i++){
		compute_paths2(i);
	}
 
	node * tree = build(0, l - 2);
	for(int i = 0; i <= l-2; i++){
		upd(tree, i, cachedpaths[plan[i]][plan[i+1]]);
	}
 
	for(int tt = 0; tt < t; tt++){
		int x = updates[tt].first;
		plan[x] = updates[tt].second;
		if(x > 0){
			upd(tree, x-1, cachedpaths[plan[x-1]][plan[x]]);
		}
		if(x <= l-2){
			upd(tree, x, cachedpaths[plan[x]][plan[x+1]]);
		}
		OptPaths route = tree->paths;
		cout << (route.size() > 0 && route[0].first < MAXD ? route[0].first : -1) << '\n';
	}
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 556 KB Output is correct
4 Correct 3 ms 556 KB Output is correct
5 Correct 3 ms 576 KB Output is correct
6 Correct 2 ms 588 KB Output is correct
7 Correct 3 ms 644 KB Output is correct
8 Correct 2 ms 644 KB Output is correct
9 Correct 2 ms 648 KB Output is correct
10 Correct 3 ms 652 KB Output is correct
11 Correct 2 ms 656 KB Output is correct
12 Correct 3 ms 772 KB Output is correct
13 Correct 4 ms 772 KB Output is correct
14 Correct 3 ms 772 KB Output is correct
15 Correct 2 ms 772 KB Output is correct
16 Correct 2 ms 772 KB Output is correct
17 Correct 3 ms 772 KB Output is correct
18 Correct 3 ms 772 KB Output is correct
19 Correct 4 ms 816 KB Output is correct
20 Correct 2 ms 816 KB Output is correct
21 Correct 3 ms 816 KB Output is correct
22 Correct 3 ms 816 KB Output is correct
23 Correct 2 ms 816 KB Output is correct
24 Correct 3 ms 816 KB Output is correct
25 Correct 2 ms 816 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 556 KB Output is correct
4 Correct 3 ms 556 KB Output is correct
5 Correct 3 ms 576 KB Output is correct
6 Correct 2 ms 588 KB Output is correct
7 Correct 3 ms 644 KB Output is correct
8 Correct 2 ms 644 KB Output is correct
9 Correct 2 ms 648 KB Output is correct
10 Correct 3 ms 652 KB Output is correct
11 Correct 2 ms 656 KB Output is correct
12 Correct 3 ms 772 KB Output is correct
13 Correct 4 ms 772 KB Output is correct
14 Correct 3 ms 772 KB Output is correct
15 Correct 2 ms 772 KB Output is correct
16 Correct 2 ms 772 KB Output is correct
17 Correct 3 ms 772 KB Output is correct
18 Correct 3 ms 772 KB Output is correct
19 Correct 4 ms 816 KB Output is correct
20 Correct 2 ms 816 KB Output is correct
21 Correct 3 ms 816 KB Output is correct
22 Correct 3 ms 816 KB Output is correct
23 Correct 2 ms 816 KB Output is correct
24 Correct 3 ms 816 KB Output is correct
25 Correct 2 ms 816 KB Output is correct
26 Correct 6 ms 816 KB Output is correct
27 Correct 314 ms 21636 KB Output is correct
28 Correct 303 ms 21844 KB Output is correct
29 Correct 593 ms 31304 KB Output is correct
30 Correct 585 ms 31556 KB Output is correct
31 Correct 529 ms 31592 KB Output is correct
32 Correct 515 ms 31856 KB Output is correct
33 Correct 662 ms 33524 KB Output is correct
34 Correct 753 ms 33796 KB Output is correct
35 Correct 635 ms 33796 KB Output is correct
36 Correct 544 ms 34092 KB Output is correct
37 Correct 635 ms 34444 KB Output is correct
38 Correct 633 ms 36548 KB Output is correct
39 Correct 624 ms 36804 KB Output is correct
40 Correct 637 ms 37164 KB Output is correct
41 Correct 632 ms 37312 KB Output is correct
42 Correct 606 ms 38944 KB Output is correct
43 Correct 661 ms 40176 KB Output is correct
44 Correct 687 ms 40768 KB Output is correct
45 Correct 533 ms 40768 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 556 KB Output is correct
4 Correct 3 ms 556 KB Output is correct
5 Correct 3 ms 576 KB Output is correct
6 Correct 2 ms 588 KB Output is correct
7 Correct 3 ms 644 KB Output is correct
8 Correct 2 ms 644 KB Output is correct
9 Correct 2 ms 648 KB Output is correct
10 Correct 3 ms 652 KB Output is correct
11 Correct 2 ms 656 KB Output is correct
12 Correct 3 ms 772 KB Output is correct
13 Correct 4 ms 772 KB Output is correct
14 Correct 3 ms 772 KB Output is correct
15 Correct 2 ms 772 KB Output is correct
16 Correct 2 ms 772 KB Output is correct
17 Correct 3 ms 772 KB Output is correct
18 Correct 3 ms 772 KB Output is correct
19 Correct 4 ms 816 KB Output is correct
20 Correct 2 ms 816 KB Output is correct
21 Correct 3 ms 816 KB Output is correct
22 Correct 3 ms 816 KB Output is correct
23 Correct 2 ms 816 KB Output is correct
24 Correct 3 ms 816 KB Output is correct
25 Correct 2 ms 816 KB Output is correct
26 Correct 6 ms 816 KB Output is correct
27 Correct 314 ms 21636 KB Output is correct
28 Correct 303 ms 21844 KB Output is correct
29 Correct 593 ms 31304 KB Output is correct
30 Correct 585 ms 31556 KB Output is correct
31 Correct 529 ms 31592 KB Output is correct
32 Correct 515 ms 31856 KB Output is correct
33 Correct 662 ms 33524 KB Output is correct
34 Correct 753 ms 33796 KB Output is correct
35 Correct 635 ms 33796 KB Output is correct
36 Correct 544 ms 34092 KB Output is correct
37 Correct 635 ms 34444 KB Output is correct
38 Correct 633 ms 36548 KB Output is correct
39 Correct 624 ms 36804 KB Output is correct
40 Correct 637 ms 37164 KB Output is correct
41 Correct 632 ms 37312 KB Output is correct
42 Correct 606 ms 38944 KB Output is correct
43 Correct 661 ms 40176 KB Output is correct
44 Correct 687 ms 40768 KB Output is correct
45 Correct 533 ms 40768 KB Output is correct
46 Correct 524 ms 40768 KB Output is correct
47 Correct 6231 ms 60368 KB Output is correct
48 Correct 7669 ms 97676 KB Output is correct
49 Correct 8930 ms 137084 KB Output is correct
50 Correct 9339 ms 137352 KB Output is correct
51 Correct 8291 ms 137664 KB Output is correct
52 Correct 11249 ms 137968 KB Output is correct
53 Correct 10737 ms 137980 KB Output is correct
54 Correct 10249 ms 138040 KB Output is correct
55 Correct 11300 ms 138468 KB Output is correct
56 Correct 11304 ms 160348 KB Output is correct
57 Correct 11462 ms 184172 KB Output is correct
58 Correct 12133 ms 209896 KB Output is correct
59 Correct 12935 ms 237892 KB Output is correct
60 Correct 13065 ms 267400 KB Output is correct
61 Correct 13996 ms 298928 KB Output is correct
62 Correct 15072 ms 332448 KB Output is correct
63 Correct 15378 ms 368076 KB Output is correct
64 Correct 11522 ms 368076 KB Output is correct
65 Correct 11135 ms 368076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 376 KB Output is correct
2 Correct 2 ms 376 KB Output is correct
3 Correct 2 ms 556 KB Output is correct
4 Correct 3 ms 556 KB Output is correct
5 Correct 3 ms 576 KB Output is correct
6 Correct 2 ms 588 KB Output is correct
7 Correct 3 ms 644 KB Output is correct
8 Correct 2 ms 644 KB Output is correct
9 Correct 2 ms 648 KB Output is correct
10 Correct 3 ms 652 KB Output is correct
11 Correct 2 ms 656 KB Output is correct
12 Correct 3 ms 772 KB Output is correct
13 Correct 4 ms 772 KB Output is correct
14 Correct 3 ms 772 KB Output is correct
15 Correct 2 ms 772 KB Output is correct
16 Correct 2 ms 772 KB Output is correct
17 Correct 3 ms 772 KB Output is correct
18 Correct 3 ms 772 KB Output is correct
19 Correct 4 ms 816 KB Output is correct
20 Correct 2 ms 816 KB Output is correct
21 Correct 3 ms 816 KB Output is correct
22 Correct 3 ms 816 KB Output is correct
23 Correct 2 ms 816 KB Output is correct
24 Correct 3 ms 816 KB Output is correct
25 Correct 2 ms 816 KB Output is correct
26 Correct 6 ms 816 KB Output is correct
27 Correct 314 ms 21636 KB Output is correct
28 Correct 303 ms 21844 KB Output is correct
29 Correct 593 ms 31304 KB Output is correct
30 Correct 585 ms 31556 KB Output is correct
31 Correct 529 ms 31592 KB Output is correct
32 Correct 515 ms 31856 KB Output is correct
33 Correct 662 ms 33524 KB Output is correct
34 Correct 753 ms 33796 KB Output is correct
35 Correct 635 ms 33796 KB Output is correct
36 Correct 544 ms 34092 KB Output is correct
37 Correct 635 ms 34444 KB Output is correct
38 Correct 633 ms 36548 KB Output is correct
39 Correct 624 ms 36804 KB Output is correct
40 Correct 637 ms 37164 KB Output is correct
41 Correct 632 ms 37312 KB Output is correct
42 Correct 606 ms 38944 KB Output is correct
43 Correct 661 ms 40176 KB Output is correct
44 Correct 687 ms 40768 KB Output is correct
45 Correct 533 ms 40768 KB Output is correct
46 Correct 524 ms 40768 KB Output is correct
47 Correct 6231 ms 60368 KB Output is correct
48 Correct 7669 ms 97676 KB Output is correct
49 Correct 8930 ms 137084 KB Output is correct
50 Correct 9339 ms 137352 KB Output is correct
51 Correct 8291 ms 137664 KB Output is correct
52 Correct 11249 ms 137968 KB Output is correct
53 Correct 10737 ms 137980 KB Output is correct
54 Correct 10249 ms 138040 KB Output is correct
55 Correct 11300 ms 138468 KB Output is correct
56 Correct 11304 ms 160348 KB Output is correct
57 Correct 11462 ms 184172 KB Output is correct
58 Correct 12133 ms 209896 KB Output is correct
59 Correct 12935 ms 237892 KB Output is correct
60 Correct 13065 ms 267400 KB Output is correct
61 Correct 13996 ms 298928 KB Output is correct
62 Correct 15072 ms 332448 KB Output is correct
63 Correct 15378 ms 368076 KB Output is correct
64 Correct 11522 ms 368076 KB Output is correct
65 Correct 11135 ms 368076 KB Output is correct
66 Correct 513 ms 368076 KB Output is correct
67 Correct 2820 ms 368076 KB Output is correct
68 Correct 10790 ms 368076 KB Output is correct
69 Correct 11105 ms 368076 KB Output is correct
70 Correct 11399 ms 368076 KB Output is correct
71 Correct 10676 ms 368076 KB Output is correct
72 Correct 12177 ms 368076 KB Output is correct
73 Correct 14766 ms 368076 KB Output is correct
74 Correct 14095 ms 368076 KB Output is correct
75 Correct 14022 ms 368076 KB Output is correct
76 Correct 12796 ms 368076 KB Output is correct
77 Correct 13255 ms 368076 KB Output is correct
78 Correct 14305 ms 368076 KB Output is correct
79 Correct 14987 ms 368076 KB Output is correct
80 Correct 16289 ms 368076 KB Output is correct
81 Correct 15800 ms 368076 KB Output is correct
82 Correct 17770 ms 368076 KB Output is correct
83 Execution timed out 18086 ms 368076 KB Time limit exceeded
84 Halted 0 ms 0 KB -