Submission #58683

# Submission time Handle Problem Language Result Execution time Memory
58683 2018-07-18T20:10:59 Z ksun48 Wild Boar (JOI18_wild_boar) C++14
62 / 100
18000 ms 360316 KB
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

const LL MAXD = (1LL << 60LL);
int n, m, t, l;
vector<int> a, b;
vector<LL> c;
typedef pair<LL, pair<int,int> > Path;
typedef vector<Path> OptPaths;
int unused = 3000;

Path new_unused(){
	Path x = {MAXD, {unused,unused}};
	//unused ++;
	return x;
}

Path alt_path(pair<int,int> avoid, OptPaths& paths){
	Path f = new_unused();
	for(Path x : paths){
		if(x.second.first != avoid.first && x.second.second != avoid.second){
			if(x.first < f.first){
				f = x;
			}
		}
	}
	return f;
}

Path alt_path2(pair<int,int> avoid, OptPaths& paths){
	Path f = new_unused();
	for(Path x : paths){
		if(x.second.first != avoid.first || x.second.second != avoid.second){
			if(x.first < f.first){
				f = x;
			}
		}
	}
	return f;
}


int np = 0;
OptPaths process(OptPaths cand){
	np++;
	OptPaths edges;

	if(cand.size() == 0) return edges;

	edges.push_back(alt_path({-1, -1}, cand));
	pair<int,int> x = edges[0].second;
	if(edges[0].first >= MAXD) return edges;

	edges.push_back(alt_path2(x, cand));
	pair<int,int> y = edges[1].second;
	if(edges[1].first >= MAXD) return edges;

	if(x.first != y.first && x.second != y.second){
		edges.push_back(alt_path({x.first, y.second}, cand));
		edges.push_back(alt_path({y.first, x.second}, cand));
	} else if(x.first == y.first){
		Path q = alt_path({x.first, -1}, cand);
		edges.push_back(q);
		edges.push_back(alt_path({x.first, q.second.second}, cand));
	} else if(x.second == y.second){
		Path q = alt_path({-1, x.second}, cand);
		edges.push_back(q);
		edges.push_back(alt_path({q.second.first, x.second}, cand));
	}
	sort(edges.begin(), edges.end());
	while(edges.size() > 0 && edges[edges.size() - 1].first >= MAXD) edges.pop_back();
	return edges;
}

OptPaths join(OptPaths a, OptPaths b){
	OptPaths cand;
	for(auto x : a){
		for(auto y : b){
			if(x.second.second != y.second.first){
				cand.push_back({min(x.first + y.first, MAXD), {x.second.first, y.second.second}});
			}
		}
	}
	return cand;
}

vector<vector<OptPaths> > cachedpaths;

void compute_paths2(int s){
	// start bellman-ford at s
	vector<OptPaths> sssp(n);
	for(int id = 0; id < m; id++){
		if(a[id] != s && b[id] != s) continue;
		if(b[id] == s) swap(a[id], b[id]);
		// all paths starting with edge id

		int st = b[id];
		vector<vector<int> > adj(n);
		for(int i = 0; i < m; i++){
			if(a[i] != s && b[i] != s){
				adj[a[i]].push_back(i);
				adj[b[i]].push_back(i);
			}
		}
		int vis[n][2];
		pair<LL,int> dist[n][2];
		int changed[n];
		for(int i = 0; i < n; i++){
			changed[i] = 0;
			vis[i][0] = vis[i][1] = 0;
			dist[i][0] = {MAXD, -2};
			dist[i][1] = {MAXD, -1};
		}
		dist[st][0] = {c[id], id};
		dist[st][1] = {MAXD, -1};
		changed[st] = 1;

		set<pair<LL,int> > stuff;
		for(int i = 0; i < n; i++){
			if(i != s){
				stuff.insert({dist[i][0].first, (i << 1)});
			}
		}
		while(!stuff.empty()){
			pair<LL,int> x = *stuff.begin();
			stuff.erase(stuff.begin());
			int v = x.second >> 1;
			int idx = x.second & 1;
			vis[v][idx] = 1;
			if(!changed[v]) continue;
			changed[v] = 0;
			for(auto i : adj[v]){
				if(b[i] == v){
					swap(a[i], b[i]);
				}
				int w = b[i];
				if(vis[w][0] && vis[w][1]) continue;
				LL d = 0;
				if(dist[v][0].second != i){
					d = min(MAXD, dist[v][0].first + c[i]);
				} else {
					d = min(MAXD, dist[v][1].first + c[i]);
				}
				for(int j = 0; j < 2; j++){
					if(!vis[w][j]){
						stuff.erase({dist[w][j].first, (w << 1) ^ j});
						break;
					}
				}
				if(dist[w][0].second == i){
					if(d < dist[w][0].first){
						changed[w] = 1;
						dist[w][0] = {d, i};
					}
				} else if(dist[w][1].second == i){
					if(d < dist[w][1].first){
						changed[w] = 1;
						dist[w][1] = {d, i};
					}
				} else if(d < dist[w][1].first){
					changed[w] = 1;
					dist[w][1] = {d, i};
				}
				if(dist[w][0] > dist[w][1]) swap(dist[w][0], dist[w][1]);
				for(int j = 0; j < 2; j++){
					if(!vis[w][j]){
						stuff.insert({dist[w][j].first, (w << 1) ^ j});
						break;
					}
				}
			}
		}
		for(int i = 0; i < n; i++){
			if(i == s) continue;
			sssp[i].push_back({dist[i][0].first,{id,dist[i][0].second}});
			sssp[i].push_back({dist[i][1].first,{id,dist[i][1].second}});
		}
	}
	for(int i = 0; i < n; i++){
		if(i == s) continue;
		sssp[i] = process(sssp[i]);
	}
	cachedpaths[s] = sssp;
}

struct node {
	node *l, *r;
	int lidx, ridx;
	OptPaths paths;
};

node * build(int l, int r){
	node * f = new node();
	f->lidx = l;
	f->ridx = r;
	if(l == r){
		f->l = f->r = NULL;
	} else {
		int m = (l + r) / 2;
		f->l = build(l, m);
		f->r = build(m + 1, r);
	}
	return f;
}

void upd(node * v, int loc, OptPaths q){
	if(v == NULL) return;
	if(v->ridx < loc || v->lidx > loc) return;
	if(v->lidx == v->ridx){
		v->paths = q;
	} else {
		upd(v->l, loc, q);
		upd(v->r, loc, q);
		v->paths = process(join(v->l->paths, v->r->paths));
	}
}

int main(){
	cin.sync_with_stdio(0); cin.tie(0);
	cin >> n >> m >> t >> l;
	cachedpaths.resize(n);
	a.resize(m); b.resize(m); c.resize(m);
	for(int i = 0; i < m; i++){
		cin >> a[i] >> b[i] >> c[i];
		a[i]--; b[i]--;
	}
	vector<int> plan(l);
	vector<int> need(n, 0);
	for(int i = 0; i < l; i++){
		cin >> plan[i];
		plan[i]--;
		need[plan[i]] = 1;
	}
	vector<pair<int,int> > updates(t);
	for(int i = 0; i < t; i++){
		cin >> updates[i].first >> updates[i].second;
		updates[i].first--; updates[i].second--;
		need[updates[i].second] = 1;
	}	
	for(int i = 0; i < n; i++){
		compute_paths2(i);
	}

	node * tree = build(0, l - 2);
	for(int i = 0; i <= l-2; i++){
		upd(tree, i, cachedpaths[plan[i]][plan[i+1]]);
	}

	for(int tt = 0; tt < t; tt++){
		int x = updates[tt].first;
		plan[x] = updates[tt].second;
		if(x > 0){
			upd(tree, x-1, cachedpaths[plan[x-1]][plan[x]]);
		}
		if(x <= l-2){
			upd(tree, x, cachedpaths[plan[x]][plan[x+1]]);
		}
		OptPaths route = tree->paths;
		cout << (route.size() > 0 && route[0].first < MAXD ? route[0].first : -1) << '\n';
	}
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 248 KB Output is correct
2 Correct 2 ms 344 KB Output is correct
3 Correct 3 ms 432 KB Output is correct
4 Correct 3 ms 536 KB Output is correct
5 Correct 3 ms 536 KB Output is correct
6 Correct 3 ms 536 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 3 ms 588 KB Output is correct
9 Correct 3 ms 700 KB Output is correct
10 Correct 3 ms 700 KB Output is correct
11 Correct 3 ms 700 KB Output is correct
12 Correct 3 ms 700 KB Output is correct
13 Correct 3 ms 700 KB Output is correct
14 Correct 3 ms 700 KB Output is correct
15 Correct 3 ms 700 KB Output is correct
16 Correct 3 ms 700 KB Output is correct
17 Correct 3 ms 700 KB Output is correct
18 Correct 3 ms 700 KB Output is correct
19 Correct 1 ms 700 KB Output is correct
20 Correct 3 ms 700 KB Output is correct
21 Correct 2 ms 700 KB Output is correct
22 Correct 3 ms 700 KB Output is correct
23 Correct 3 ms 700 KB Output is correct
24 Correct 3 ms 700 KB Output is correct
25 Correct 3 ms 700 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 248 KB Output is correct
2 Correct 2 ms 344 KB Output is correct
3 Correct 3 ms 432 KB Output is correct
4 Correct 3 ms 536 KB Output is correct
5 Correct 3 ms 536 KB Output is correct
6 Correct 3 ms 536 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 3 ms 588 KB Output is correct
9 Correct 3 ms 700 KB Output is correct
10 Correct 3 ms 700 KB Output is correct
11 Correct 3 ms 700 KB Output is correct
12 Correct 3 ms 700 KB Output is correct
13 Correct 3 ms 700 KB Output is correct
14 Correct 3 ms 700 KB Output is correct
15 Correct 3 ms 700 KB Output is correct
16 Correct 3 ms 700 KB Output is correct
17 Correct 3 ms 700 KB Output is correct
18 Correct 3 ms 700 KB Output is correct
19 Correct 1 ms 700 KB Output is correct
20 Correct 3 ms 700 KB Output is correct
21 Correct 2 ms 700 KB Output is correct
22 Correct 3 ms 700 KB Output is correct
23 Correct 3 ms 700 KB Output is correct
24 Correct 3 ms 700 KB Output is correct
25 Correct 3 ms 700 KB Output is correct
26 Correct 7 ms 700 KB Output is correct
27 Correct 347 ms 21268 KB Output is correct
28 Correct 375 ms 21268 KB Output is correct
29 Correct 666 ms 30244 KB Output is correct
30 Correct 614 ms 30316 KB Output is correct
31 Correct 616 ms 30316 KB Output is correct
32 Correct 590 ms 30316 KB Output is correct
33 Correct 716 ms 31608 KB Output is correct
34 Correct 653 ms 31608 KB Output is correct
35 Correct 651 ms 31608 KB Output is correct
36 Correct 634 ms 31660 KB Output is correct
37 Correct 732 ms 31660 KB Output is correct
38 Correct 737 ms 33156 KB Output is correct
39 Correct 657 ms 33308 KB Output is correct
40 Correct 734 ms 33308 KB Output is correct
41 Correct 758 ms 33308 KB Output is correct
42 Correct 714 ms 34700 KB Output is correct
43 Correct 928 ms 35692 KB Output is correct
44 Correct 767 ms 35692 KB Output is correct
45 Correct 649 ms 35692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 248 KB Output is correct
2 Correct 2 ms 344 KB Output is correct
3 Correct 3 ms 432 KB Output is correct
4 Correct 3 ms 536 KB Output is correct
5 Correct 3 ms 536 KB Output is correct
6 Correct 3 ms 536 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 3 ms 588 KB Output is correct
9 Correct 3 ms 700 KB Output is correct
10 Correct 3 ms 700 KB Output is correct
11 Correct 3 ms 700 KB Output is correct
12 Correct 3 ms 700 KB Output is correct
13 Correct 3 ms 700 KB Output is correct
14 Correct 3 ms 700 KB Output is correct
15 Correct 3 ms 700 KB Output is correct
16 Correct 3 ms 700 KB Output is correct
17 Correct 3 ms 700 KB Output is correct
18 Correct 3 ms 700 KB Output is correct
19 Correct 1 ms 700 KB Output is correct
20 Correct 3 ms 700 KB Output is correct
21 Correct 2 ms 700 KB Output is correct
22 Correct 3 ms 700 KB Output is correct
23 Correct 3 ms 700 KB Output is correct
24 Correct 3 ms 700 KB Output is correct
25 Correct 3 ms 700 KB Output is correct
26 Correct 7 ms 700 KB Output is correct
27 Correct 347 ms 21268 KB Output is correct
28 Correct 375 ms 21268 KB Output is correct
29 Correct 666 ms 30244 KB Output is correct
30 Correct 614 ms 30316 KB Output is correct
31 Correct 616 ms 30316 KB Output is correct
32 Correct 590 ms 30316 KB Output is correct
33 Correct 716 ms 31608 KB Output is correct
34 Correct 653 ms 31608 KB Output is correct
35 Correct 651 ms 31608 KB Output is correct
36 Correct 634 ms 31660 KB Output is correct
37 Correct 732 ms 31660 KB Output is correct
38 Correct 737 ms 33156 KB Output is correct
39 Correct 657 ms 33308 KB Output is correct
40 Correct 734 ms 33308 KB Output is correct
41 Correct 758 ms 33308 KB Output is correct
42 Correct 714 ms 34700 KB Output is correct
43 Correct 928 ms 35692 KB Output is correct
44 Correct 767 ms 35692 KB Output is correct
45 Correct 649 ms 35692 KB Output is correct
46 Correct 543 ms 35692 KB Output is correct
47 Correct 6706 ms 54840 KB Output is correct
48 Correct 8894 ms 91924 KB Output is correct
49 Correct 9692 ms 131152 KB Output is correct
50 Correct 10463 ms 131276 KB Output is correct
51 Correct 9825 ms 131276 KB Output is correct
52 Correct 12352 ms 131276 KB Output is correct
53 Correct 12160 ms 131276 KB Output is correct
54 Correct 12571 ms 131276 KB Output is correct
55 Correct 12489 ms 131276 KB Output is correct
56 Correct 13038 ms 152660 KB Output is correct
57 Correct 12565 ms 175856 KB Output is correct
58 Correct 12581 ms 201428 KB Output is correct
59 Correct 14681 ms 228868 KB Output is correct
60 Correct 12061 ms 258672 KB Output is correct
61 Correct 14947 ms 290200 KB Output is correct
62 Correct 15068 ms 324228 KB Output is correct
63 Correct 14652 ms 360316 KB Output is correct
64 Correct 11112 ms 360316 KB Output is correct
65 Correct 11668 ms 360316 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 248 KB Output is correct
2 Correct 2 ms 344 KB Output is correct
3 Correct 3 ms 432 KB Output is correct
4 Correct 3 ms 536 KB Output is correct
5 Correct 3 ms 536 KB Output is correct
6 Correct 3 ms 536 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 3 ms 588 KB Output is correct
9 Correct 3 ms 700 KB Output is correct
10 Correct 3 ms 700 KB Output is correct
11 Correct 3 ms 700 KB Output is correct
12 Correct 3 ms 700 KB Output is correct
13 Correct 3 ms 700 KB Output is correct
14 Correct 3 ms 700 KB Output is correct
15 Correct 3 ms 700 KB Output is correct
16 Correct 3 ms 700 KB Output is correct
17 Correct 3 ms 700 KB Output is correct
18 Correct 3 ms 700 KB Output is correct
19 Correct 1 ms 700 KB Output is correct
20 Correct 3 ms 700 KB Output is correct
21 Correct 2 ms 700 KB Output is correct
22 Correct 3 ms 700 KB Output is correct
23 Correct 3 ms 700 KB Output is correct
24 Correct 3 ms 700 KB Output is correct
25 Correct 3 ms 700 KB Output is correct
26 Correct 7 ms 700 KB Output is correct
27 Correct 347 ms 21268 KB Output is correct
28 Correct 375 ms 21268 KB Output is correct
29 Correct 666 ms 30244 KB Output is correct
30 Correct 614 ms 30316 KB Output is correct
31 Correct 616 ms 30316 KB Output is correct
32 Correct 590 ms 30316 KB Output is correct
33 Correct 716 ms 31608 KB Output is correct
34 Correct 653 ms 31608 KB Output is correct
35 Correct 651 ms 31608 KB Output is correct
36 Correct 634 ms 31660 KB Output is correct
37 Correct 732 ms 31660 KB Output is correct
38 Correct 737 ms 33156 KB Output is correct
39 Correct 657 ms 33308 KB Output is correct
40 Correct 734 ms 33308 KB Output is correct
41 Correct 758 ms 33308 KB Output is correct
42 Correct 714 ms 34700 KB Output is correct
43 Correct 928 ms 35692 KB Output is correct
44 Correct 767 ms 35692 KB Output is correct
45 Correct 649 ms 35692 KB Output is correct
46 Correct 543 ms 35692 KB Output is correct
47 Correct 6706 ms 54840 KB Output is correct
48 Correct 8894 ms 91924 KB Output is correct
49 Correct 9692 ms 131152 KB Output is correct
50 Correct 10463 ms 131276 KB Output is correct
51 Correct 9825 ms 131276 KB Output is correct
52 Correct 12352 ms 131276 KB Output is correct
53 Correct 12160 ms 131276 KB Output is correct
54 Correct 12571 ms 131276 KB Output is correct
55 Correct 12489 ms 131276 KB Output is correct
56 Correct 13038 ms 152660 KB Output is correct
57 Correct 12565 ms 175856 KB Output is correct
58 Correct 12581 ms 201428 KB Output is correct
59 Correct 14681 ms 228868 KB Output is correct
60 Correct 12061 ms 258672 KB Output is correct
61 Correct 14947 ms 290200 KB Output is correct
62 Correct 15068 ms 324228 KB Output is correct
63 Correct 14652 ms 360316 KB Output is correct
64 Correct 11112 ms 360316 KB Output is correct
65 Correct 11668 ms 360316 KB Output is correct
66 Correct 431 ms 360316 KB Output is correct
67 Correct 2617 ms 360316 KB Output is correct
68 Correct 10392 ms 360316 KB Output is correct
69 Correct 11561 ms 360316 KB Output is correct
70 Correct 11639 ms 360316 KB Output is correct
71 Correct 11248 ms 360316 KB Output is correct
72 Correct 12419 ms 360316 KB Output is correct
73 Correct 14892 ms 360316 KB Output is correct
74 Correct 13188 ms 360316 KB Output is correct
75 Correct 14463 ms 360316 KB Output is correct
76 Correct 12281 ms 360316 KB Output is correct
77 Correct 13075 ms 360316 KB Output is correct
78 Correct 13488 ms 360316 KB Output is correct
79 Correct 14444 ms 360316 KB Output is correct
80 Correct 15653 ms 360316 KB Output is correct
81 Correct 14321 ms 360316 KB Output is correct
82 Correct 16752 ms 360316 KB Output is correct
83 Execution timed out 18034 ms 360316 KB Time limit exceeded
84 Halted 0 ms 0 KB -