Submission #578437

# Submission time Handle Problem Language Result Execution time Memory
578437 2022-06-16T22:19:11 Z SSRS Werewolf (IOI18_werewolf) C++14
100 / 100
754 ms 129036 KB
#include <bits/stdc++.h>
using namespace std;
const int LOG = 18;
struct unionfind{
  vector<int> p;
  unionfind(int N): p(N, -1){
  }
  int root(int x){
    if (p[x] == -1){
      return x;
    } else {
      p[x] = root(p[x]);
      return p[x];
    }
  }
  bool same(int x, int y){
    return root(x) == root(y);
  }
  void unite(int x, int y){
    x = root(x);
    y = root(y);
    if (x != y){
      p[x] = y;
    }
  }
};
void dfs(vector<vector<int>> &c, vector<int> &L, vector<int> &R, int &t, int v){
  L[v] = t;
  t++;
  for (int w : c[v]){
    dfs(c, L, R, t, w);
  }
  R[v] = t;
}
struct binary_indexed_tree{
  int N;
  vector<int> BIT;
  binary_indexed_tree(int N): N(N), BIT(N + 1, 0){
  }
  void add(int i){
    i++;
    while (i <= N){
      BIT[i]++;
      i += i & -i;
    }
  }
  int sum(int i){
    int ans = 0;
    while (i > 0){
      ans += BIT[i];
      i -= i & -i;
    }
    return ans;
  }
  int sum(int L, int R){
    return sum(R) - sum(L);
  }
};
vector<int> check_validity(int N, vector<int> X, vector<int> Y, vector<int> S, vector<int> E, vector<int> L, vector<int> R){
  int M = X.size();
  int Q = S.size();
  vector<vector<int>> G(N);
  for (int i = 0; i < M; i++){
    G[X[i]].push_back(Y[i]);
    G[Y[i]].push_back(X[i]);
  }
  unionfind UF1(N);
  vector<int> p1(N, -1);
  vector<vector<int>> c1(N);
  for (int i = N - 1; i >= 0; i--){
    for (int j : G[i]){
      if (j > i){
        int x = UF1.root(j);
        if (x != i){
          p1[x] = i;
          c1[i].push_back(x);
          UF1.unite(x, i);
        }
      }
    }
  }
  unionfind UF2(N);
  vector<int> p2(N, -1);
  vector<vector<int>> c2(N);
  for (int i = 0; i < N; i++){
    for (int j : G[i]){
      if (j < i){
        int x = UF2.root(j);
        if (x != i){
          p2[x] = i;
          c2[i].push_back(x);
          UF2.unite(x, i);
        }
      }
    }
  }
  vector<int> L1(N), R1(N);
  int t1 = 0;
  dfs(c1, L1, R1, t1, 0);
  vector<int> L2(N), R2(N);
  int t2 = 0;
  dfs(c2, L2, R2, t2, N - 1);
  vector<vector<int>> pp1(LOG, vector<int>(N, -1));
  pp1[0] = p1;
  for (int i = 0; i < LOG - 1; i++){
    for (int j = 0; j < N; j++){
      if (pp1[i][j] != -1){
        pp1[i + 1][j] = pp1[i][pp1[i][j]];
      }
    }
  }
  vector<vector<int>> pp2(LOG, vector<int>(N, -1));
  pp2[0] = p2;
  for (int i = 0; i < LOG - 1; i++){
    for (int j = 0; j < N; j++){
      if (pp2[i][j] != -1){
        pp2[i + 1][j] = pp2[i][pp2[i][j]];
      }
    }
  }
  vector<int> X1(Q), X2(Q), Y1(Q), Y2(Q);
  for (int i = 0; i < Q; i++){
    int v1 = S[i];
    for (int j = LOG - 1; j >= 0; j--){
      if (pp1[j][v1] >= L[i]){
        v1 = pp1[j][v1];
      }
    }
    X1[i] = L1[v1];
    X2[i] = R1[v1];
    int v2 = E[i];
    for (int j = LOG - 1; j >= 0; j--){
      if (pp2[j][v2] != -1 && pp2[j][v2] <= R[i]){
        v2 = pp2[j][v2];
      }
    }
    Y1[i] = L2[v2];
    Y2[i] = R2[v2];
  }
  vector<vector<int>> query_add(N + 1), query_sub(N + 1);
  for (int i = 0; i < Q; i++){
    query_sub[X1[i]].push_back(i);
    query_add[X2[i]].push_back(i);
  }
  vector<vector<int>> upd(N + 1);
  for (int i = 0; i < N; i++){
    upd[L1[i]].push_back(L2[i]);
  }
  binary_indexed_tree BIT(N);
  vector<int> ans(Q, 0);
  for (int i = 0; i <= N; i++){
    for (int j : query_add[i]){
      ans[j] += BIT.sum(Y1[j], Y2[j]);
    }
    for (int j : query_sub[i]){
      ans[j] -= BIT.sum(Y1[j], Y2[j]);
    }
    for (int j : upd[i]){
      BIT.add(j);
    }
  }
  for (int i = 0; i < Q; i++){
    ans[i] = min(ans[i], 1);
  }
  return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 6 ms 1876 KB Output is correct
11 Correct 7 ms 1776 KB Output is correct
12 Correct 7 ms 1816 KB Output is correct
13 Correct 5 ms 2004 KB Output is correct
14 Correct 6 ms 2004 KB Output is correct
15 Correct 6 ms 1876 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 578 ms 102908 KB Output is correct
2 Correct 635 ms 114720 KB Output is correct
3 Correct 604 ms 110728 KB Output is correct
4 Correct 561 ms 109424 KB Output is correct
5 Correct 533 ms 109628 KB Output is correct
6 Correct 591 ms 110652 KB Output is correct
7 Correct 539 ms 109692 KB Output is correct
8 Correct 619 ms 114720 KB Output is correct
9 Correct 407 ms 110140 KB Output is correct
10 Correct 394 ms 108652 KB Output is correct
11 Correct 440 ms 108656 KB Output is correct
12 Correct 402 ms 108316 KB Output is correct
13 Correct 576 ms 122184 KB Output is correct
14 Correct 627 ms 122248 KB Output is correct
15 Correct 642 ms 122108 KB Output is correct
16 Correct 628 ms 122132 KB Output is correct
17 Correct 545 ms 109756 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 344 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 6 ms 1876 KB Output is correct
11 Correct 7 ms 1776 KB Output is correct
12 Correct 7 ms 1816 KB Output is correct
13 Correct 5 ms 2004 KB Output is correct
14 Correct 6 ms 2004 KB Output is correct
15 Correct 6 ms 1876 KB Output is correct
16 Correct 578 ms 102908 KB Output is correct
17 Correct 635 ms 114720 KB Output is correct
18 Correct 604 ms 110728 KB Output is correct
19 Correct 561 ms 109424 KB Output is correct
20 Correct 533 ms 109628 KB Output is correct
21 Correct 591 ms 110652 KB Output is correct
22 Correct 539 ms 109692 KB Output is correct
23 Correct 619 ms 114720 KB Output is correct
24 Correct 407 ms 110140 KB Output is correct
25 Correct 394 ms 108652 KB Output is correct
26 Correct 440 ms 108656 KB Output is correct
27 Correct 402 ms 108316 KB Output is correct
28 Correct 576 ms 122184 KB Output is correct
29 Correct 627 ms 122248 KB Output is correct
30 Correct 642 ms 122108 KB Output is correct
31 Correct 628 ms 122132 KB Output is correct
32 Correct 545 ms 109756 KB Output is correct
33 Correct 597 ms 112364 KB Output is correct
34 Correct 259 ms 36672 KB Output is correct
35 Correct 677 ms 116504 KB Output is correct
36 Correct 630 ms 112280 KB Output is correct
37 Correct 676 ms 115240 KB Output is correct
38 Correct 605 ms 113224 KB Output is correct
39 Correct 754 ms 129036 KB Output is correct
40 Correct 670 ms 121568 KB Output is correct
41 Correct 470 ms 112260 KB Output is correct
42 Correct 443 ms 109516 KB Output is correct
43 Correct 677 ms 121372 KB Output is correct
44 Correct 612 ms 113672 KB Output is correct
45 Correct 566 ms 125884 KB Output is correct
46 Correct 528 ms 125604 KB Output is correct
47 Correct 627 ms 122272 KB Output is correct
48 Correct 657 ms 122044 KB Output is correct
49 Correct 663 ms 122416 KB Output is correct
50 Correct 711 ms 122124 KB Output is correct
51 Correct 620 ms 120496 KB Output is correct
52 Correct 653 ms 120552 KB Output is correct