#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
#define long unsigned long
#define pb push_back
#define mp make_pair
#define all(v) (v).begin(),(v).end()
#define rall(v) (v).rbegin(),(v).rend()
#define lb lower_bound
#define ub upper_bound
#define sz(v) int((v).size())
#define do_not_disturb ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'
const int N = 2e5+7;
vector <vector <int>> graph(N);
int root, subtree[N], depth[N], parent[N], added[N];
int turn[N];
int head[N], heavy[N], pos[N], t;
ll ans;
ll tree[N*4];
bool lz[N*4];
struct query {
int saizu;
vector <int> cling;
query() {
saizu = 0;
}
query(int n) {
saizu = n;
cling.resize(n);
}
};
void push(int v, int l, int r) {
if (lz[v]) {
tree[v] *= -1;
if (l != r) {
lz[v*2] ^= 1;
lz[v*2+1] ^= 1;
}
lz[v] = 0;
}
}
void build(int v, int l, int r) {
if (l == r) {
tree[v] = turn[l];
return;
}
int mid = (l+r) >> 1;
build(v*2, l, mid);
build(v*2+1, mid+1, r);
tree[v] = tree[v*2]+tree[v*2+1];
}
void update(int v, int l, int r, int ql, int qr) {
push(v, l, r);
if (ql > r || l > qr) return;
if (ql <= l && r <= qr) {
lz[v] ^= 1;
push(v, l, r);
return;
}
int mid = (l+r) >> 1;
update(v*2, l, mid, ql, qr);
update(v*2+1, mid+1, r, ql, qr);
tree[v] = tree[v*2]+tree[v*2+1];
}
ll get(int v, int l, int r, int ql, int qr) {
push(v, l, r);
if (ql > r || l > qr) return 0;
if (ql <= l && r <= qr) return tree[v];
int mid = (l+r) >> 1;
return get(v*2, l, mid, ql, qr)+get(v*2+1, mid+1, r, ql, qr);
}
ll get(int n, int x) {
ll res = 0;
while (head[n] != root) {
res += get(1, 1, x, pos[head[n]], pos[n]);
update(1, 1, x, pos[head[n]], pos[n]);
n = parent[head[n]];
}
res += get(1, 1, x, pos[root], pos[n]);
update(1, 1, x, pos[root], pos[n]);
return res;
}
void clear(int n, int x) {
while (head[n] != root) {
update(1, 1, x, pos[head[n]], pos[n]);
n = parent[head[n]];
}
update(1, 1, x, pos[root], pos[n]);
}
int dfs(int v, int p) {
subtree[v] = (sz(graph[v]) == 1 ? 1 : 0);
parent[v] = p;
int saizu = 1;
int mx_saizu = 0;
for (auto to : graph[v]) {
if (to == p) {
continue;
}
depth[to] = depth[v] + 1;
auto tmp = dfs(to, v);
saizu += tmp;
if (tmp > mx_saizu) {
mx_saizu = tmp;
heavy[v] = to;
}
subtree[v] += subtree[to];
}
if (v != root)
ans += 2 - (subtree[v] % 2);
return saizu;
}
void decompose(int v, int h) {
head[v] = h; pos[v] = ++t;
if (heavy[v] != -1) decompose(heavy[v], h);
for (auto to : graph[v]) {
if (to != parent[v] && to != heavy[v]) {
decompose(to, to);
}
}
}
void initiate(int n) {
for (int i = 1; i <= n; i++) {
heavy[i] = -1;
if (sz(graph[i]) > 1) {
root = i;
}
}
dfs(root, root);
decompose(root, root);
for (int i = 1; i <= n; i++) {
turn[pos[i]] = (subtree[i]&1 ? 1 : -1);
}
turn[pos[root]] = 0;
build(1, 1, n);
}
void solve() {
int n, q;
cin >> n >> q;
vector <query> queries;
for (int i = 1; i < n; i++) {
int a, b;
cin >> a >> b;
graph[a].pb(b);
graph[b].pb(a);
}
for (int i = 0; i < q; i++) {
int k;
cin >> k;
queries.pb(query(k));
for (int j = 0; j < k; j++) {
cin >> queries[i].cling[j];
}
}
initiate(n);
for (int test = 0; test < q; test++) {
ll tmp = queries[test].saizu;
int l = 0;
auto leaves = queries[test].cling;
for (auto p : leaves) {
if (sz(graph[p]) == 1) {
added[p]++;
if (added[p] == 1) {
continue;
}
}
l++;
tmp += get(p, n);
}
if ((subtree[root]+l)&1) cout << -1 << endl;
else cout << ans+tmp << endl;
for (auto p : leaves) {
if (sz(graph[p]) == 1) {
added[p]--;
if (added[p] == 0) {
continue;
}
}
clear(p, n);
}
}
}
int main() {
do_not_disturb
int t = 1;
//~ cin >> t;
while (t--) {
solve();
}
return 0;
}
/*
7 5
1 2
1 3
2 4
2 5
3 6
3 7
1 1
2 1 1
2 7 7
2 6 7
2 4 7
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
5076 KB |
Output is correct |
2 |
Correct |
143 ms |
7564 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
67 ms |
5984 KB |
Output is correct |
2 |
Correct |
69 ms |
5980 KB |
Output is correct |
3 |
Correct |
31 ms |
13992 KB |
Output is correct |
4 |
Correct |
96 ms |
12676 KB |
Output is correct |
5 |
Correct |
94 ms |
14660 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
52 ms |
6612 KB |
Output is correct |
2 |
Correct |
54 ms |
6612 KB |
Output is correct |
3 |
Correct |
61 ms |
22412 KB |
Output is correct |
4 |
Correct |
141 ms |
21760 KB |
Output is correct |
5 |
Correct |
44 ms |
21012 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
98 ms |
7908 KB |
Output is correct |
2 |
Correct |
46 ms |
7068 KB |
Output is correct |
3 |
Correct |
11 ms |
6868 KB |
Output is correct |
4 |
Correct |
11 ms |
7380 KB |
Output is correct |
5 |
Correct |
14 ms |
7508 KB |
Output is correct |
6 |
Correct |
60 ms |
7764 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
176 ms |
14668 KB |
Output is correct |
2 |
Correct |
281 ms |
10944 KB |
Output is correct |
3 |
Correct |
206 ms |
8304 KB |
Output is correct |
4 |
Correct |
245 ms |
10952 KB |
Output is correct |
5 |
Correct |
251 ms |
11096 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
282 ms |
20580 KB |
Output is correct |
2 |
Correct |
121 ms |
23840 KB |
Output is correct |
3 |
Correct |
182 ms |
23096 KB |
Output is correct |
4 |
Correct |
167 ms |
23672 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
5076 KB |
Output is correct |
2 |
Correct |
143 ms |
7564 KB |
Output is correct |
3 |
Correct |
67 ms |
5984 KB |
Output is correct |
4 |
Correct |
69 ms |
5980 KB |
Output is correct |
5 |
Correct |
31 ms |
13992 KB |
Output is correct |
6 |
Correct |
96 ms |
12676 KB |
Output is correct |
7 |
Correct |
94 ms |
14660 KB |
Output is correct |
8 |
Correct |
52 ms |
6612 KB |
Output is correct |
9 |
Correct |
54 ms |
6612 KB |
Output is correct |
10 |
Correct |
61 ms |
22412 KB |
Output is correct |
11 |
Correct |
141 ms |
21760 KB |
Output is correct |
12 |
Correct |
44 ms |
21012 KB |
Output is correct |
13 |
Correct |
98 ms |
7908 KB |
Output is correct |
14 |
Correct |
46 ms |
7068 KB |
Output is correct |
15 |
Correct |
11 ms |
6868 KB |
Output is correct |
16 |
Correct |
11 ms |
7380 KB |
Output is correct |
17 |
Correct |
14 ms |
7508 KB |
Output is correct |
18 |
Correct |
60 ms |
7764 KB |
Output is correct |
19 |
Correct |
176 ms |
14668 KB |
Output is correct |
20 |
Correct |
281 ms |
10944 KB |
Output is correct |
21 |
Correct |
206 ms |
8304 KB |
Output is correct |
22 |
Correct |
245 ms |
10952 KB |
Output is correct |
23 |
Correct |
251 ms |
11096 KB |
Output is correct |
24 |
Correct |
282 ms |
20580 KB |
Output is correct |
25 |
Correct |
121 ms |
23840 KB |
Output is correct |
26 |
Correct |
182 ms |
23096 KB |
Output is correct |
27 |
Correct |
167 ms |
23672 KB |
Output is correct |
28 |
Correct |
176 ms |
10704 KB |
Output is correct |
29 |
Correct |
173 ms |
17028 KB |
Output is correct |
30 |
Correct |
89 ms |
14672 KB |
Output is correct |
31 |
Correct |
119 ms |
21764 KB |
Output is correct |
32 |
Correct |
238 ms |
10964 KB |
Output is correct |
33 |
Correct |
150 ms |
16720 KB |
Output is correct |
34 |
Correct |
187 ms |
16832 KB |
Output is correct |
35 |
Correct |
179 ms |
17868 KB |
Output is correct |