Submission #575742

# Submission time Handle Problem Language Result Execution time Memory
575742 2022-06-11T08:38:08 Z talant117408 Village (BOI20_village) C++17
100 / 100
132 ms 22748 KB
#include <bits/stdc++.h>
 
using namespace std;
 
typedef long long ll;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
 
#define pb                  push_back
#define mp                  make_pair
#define all(v)              (v).begin(),(v).end()
#define rall(v)             (v).rbegin(),(v).rend()
#define lb                  lower_bound
#define ub                  upper_bound
#define sz(v)               int((v).size())
#define do_not_disturb      ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl                '\n'

void solve() {
    int n;
    cin >> n;
    vector <int> graph[n];
    for (int i = 0; i < n-1; i++) {
        int a, b;
        cin >> a >> b;
        a--; b--;
        graph[a].pb(b);
        graph[b].pb(a);
    }
    
    ll cost[2];
    cost[0] = cost[1] = 0;
    vector <int> subtree(n);
    vector <vector <int>> rear(2, vector <int> (n, 0));
    
    function <int(int, int)> find_smallest = [&](int v, int p) {
        vector <int> children;
        subtree[v] = 1;
        for (auto to : graph[v]) {
            if (to == p) continue;
            if (find_smallest(to, v)) {
                children.pb(to);
            }
            subtree[v] += subtree[to];
        }
        if (sz(children) == 0) {
            if (v) return 1;
            cost[0] += 2;
            int x = graph[v][0];
            rear[0][v] = rear[0][x];
            rear[0][x] = v;
        }
        else if (sz(children)&1) {
            cost[0] += int(sz(children)/2)*4+2;
            rear[0][v] = children[0];
            rear[0][children[0]] = v;
            for (int i = 1; i < sz(children); i += 2) {
                rear[0][children[i]] = children[i+1];
                rear[0][children[i+1]] = children[i];
            }
        }
        else {
            cost[0] += sz(children)*2;
            rear[0][v] = children[1];
            rear[0][children[1]] = children[0];
            rear[0][children[0]] = v;
            for (int i = 2; i < sz(children); i += 2) {
                rear[0][children[i]] = children[i+1];
                rear[0][children[i+1]] = children[i];
            }
        }
        return 0;
    };
    find_smallest(0, 0);
    
    function <int(int, int)> find_centroid = [&](int v, int p) {
        for (auto to : graph[v]) {
            if (to == p) continue;
            if (subtree[to]*2 > n) {
                return find_centroid(to, v);
            }
        }
        return v;
    };
    function <void(int, int)> find_largest = [&](int v, int p) {
        if (v) {
            cost[1] += min(subtree[v], subtree[0]-subtree[v])*2;
        }
        for (auto to : graph[v]) {
            if (to == p) continue;
            find_largest(to, v);
        }
    };
    int centroid = find_centroid(0, 0);
    find_largest(0, 0);
    
    vector <vector <int>> children(sz(graph[centroid]));
    priority_queue <pii> st;
    
    function <void(int, int, int)> find_children = [&](int v, int p, int i) {
        children[i].pb(v);
        for (auto to : graph[v]) {
            if (to == p) continue;
            find_children(to, v, i);
        }
    };
    for (int i = 0; i < sz(graph[centroid]); i++) {
        find_children(graph[centroid][i], centroid, i);
        st.push(mp(sz(children[i]), i));
    }
    
    while (sz(st) > 1) {
        auto l = st.top(); st.pop();
        auto r = st.top(); st.pop();
        l.first--; r.first--;
        rear[1][children[l.second].back()] = children[r.second].back();
        rear[1][children[r.second].back()] = children[l.second].back();
        children[l.second].pop_back();
        children[r.second].pop_back();
        if (l.first) st.push(l);
        if (r.first) st.push(r);
    }
    if (sz(st)) {
        auto l = st.top().second;
        rear[1][centroid] = children[l].back();
        rear[1][children[l].back()] = centroid;
    }
    else {
        auto x = graph[centroid][0];
        rear[1][centroid] = rear[1][x];
        rear[1][x] = centroid;
    }
    
    cout << cost[0] << ' ' << cost[1] << endl;
    for (int i = 0; i < 2; i++) {
        for (auto to : rear[i]) cout << to+1 << ' ';
        cout << endl;
    }
}

int main() {
    //~ do_not_disturb
    
    int t = 1;
    //~ cin >> t;
    while (t--) {
        solve();
    }
    
    return 0;
}
/*
7
4 2
5 7
3 4
6 3
1 3
4 5
*/
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 1 ms 304 KB Output is correct
16 Correct 0 ms 300 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 468 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 2 ms 320 KB Output is correct
10 Correct 2 ms 308 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 428 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 308 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 2 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 300 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 340 KB Output is correct
29 Correct 2 ms 340 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 1 ms 304 KB Output is correct
16 Correct 0 ms 300 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 468 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 2 ms 320 KB Output is correct
27 Correct 2 ms 308 KB Output is correct
28 Correct 1 ms 340 KB Output is correct
29 Correct 1 ms 428 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
31 Correct 1 ms 340 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
33 Correct 1 ms 308 KB Output is correct
34 Correct 1 ms 340 KB Output is correct
35 Correct 1 ms 340 KB Output is correct
36 Correct 1 ms 340 KB Output is correct
37 Correct 1 ms 340 KB Output is correct
38 Correct 2 ms 340 KB Output is correct
39 Correct 1 ms 340 KB Output is correct
40 Correct 1 ms 340 KB Output is correct
41 Correct 1 ms 340 KB Output is correct
42 Correct 1 ms 340 KB Output is correct
43 Correct 1 ms 300 KB Output is correct
44 Correct 1 ms 340 KB Output is correct
45 Correct 1 ms 340 KB Output is correct
46 Correct 2 ms 340 KB Output is correct
47 Correct 1 ms 340 KB Output is correct
48 Correct 96 ms 8352 KB Output is correct
49 Correct 103 ms 9092 KB Output is correct
50 Correct 107 ms 9156 KB Output is correct
51 Correct 77 ms 7216 KB Output is correct
52 Correct 121 ms 8904 KB Output is correct
53 Correct 93 ms 8164 KB Output is correct
54 Correct 57 ms 11016 KB Output is correct
55 Correct 132 ms 22748 KB Output is correct
56 Correct 126 ms 15492 KB Output is correct
57 Correct 115 ms 13188 KB Output is correct
58 Correct 113 ms 11084 KB Output is correct
59 Correct 104 ms 8972 KB Output is correct
60 Correct 96 ms 14668 KB Output is correct
61 Correct 102 ms 10316 KB Output is correct
62 Correct 92 ms 9200 KB Output is correct
63 Correct 87 ms 8836 KB Output is correct
64 Correct 96 ms 9092 KB Output is correct
65 Correct 93 ms 9284 KB Output is correct
66 Correct 90 ms 8972 KB Output is correct
67 Correct 66 ms 7496 KB Output is correct
68 Correct 73 ms 7800 KB Output is correct
69 Correct 96 ms 9228 KB Output is correct
70 Correct 82 ms 8644 KB Output is correct
71 Correct 61 ms 6536 KB Output is correct
72 Correct 76 ms 7352 KB Output is correct
73 Correct 92 ms 9472 KB Output is correct
74 Correct 82 ms 8420 KB Output is correct
75 Correct 121 ms 8748 KB Output is correct
76 Correct 98 ms 8568 KB Output is correct
77 Correct 88 ms 8796 KB Output is correct
78 Correct 57 ms 6076 KB Output is correct
79 Correct 69 ms 7068 KB Output is correct
80 Correct 99 ms 8568 KB Output is correct
81 Correct 97 ms 8800 KB Output is correct
82 Correct 89 ms 8912 KB Output is correct