#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define int ll
#define y1 zck_is_king
#define pii pair<int, int>
#define ull unsigned ll
#define f first
#define s second
#define ALL(x) x.begin(),x.end()
#define SZ(x) (int)x.size()
#define SQ(x) (x)*(x)
#define MN(a,b) a = min(a,(__typeof__(a))(b))
#define MX(a,b) a = max(a,(__typeof__(a))(b))
#define pb push_back
#define REP(i,n) for (int i = 0; i<n; ++i)
#define RREP(i,n) for (int i = n-1; i>=0; --i)
#define REP1(i,n) for (int i = 1; i<=n; ++i)
#define SORT_UNIQUE(c) (sort(c.begin(),c.end()), c.resize(distance(c.begin(),unique(c.begin(),c.end()))))
#ifdef BALBIT
#define IOS()
#define bug(...) fprintf(stderr,"#%d (%s) = ",__LINE__,#__VA_ARGS__),_do(__VA_ARGS__);
template<typename T> void _do(T &&x){cerr<<x<<endl;}
template<typename T, typename ...S> void _do(T &&x, S &&...y){cerr<<x<<", ";_do(y...);}
#else
#define IOS() ios_base::sync_with_stdio(0);cin.tie(0);
#define endl '\n'
#define bug(...)
#endif
const int iinf = 1e9+10;
const ll inf = 1ll<<60;
const ll mod = 1e9+7 ;
void GG(){cout<<"0\n"; exit(0);}
ll mpow(ll a, ll n, ll mo = mod){ // a^n % mod
ll re=1;
while (n>0){
if (n&1) re = re*a %mo;
a = a*a %mo;
n>>=1;
}
return re;
}
ll inv (ll b, ll mo = mod){
if (b==1) return b;
return (mo-mo/b) * inv(mo%b,mo) % mo;
}
const int maxn = 2800*2+5;
//ll xat[maxn], yat[maxn];
ll rt[maxn][maxn], dw[maxn][maxn]; // right (m++), down (n++)
ll dp[maxn][maxn];
struct seg{
ll l,r,h,c;
};
vector<seg> dseg, rseg;
vector<ll> dax, rax; // axis lines
ll ans[3000005];
//struct ask{
// signed df, i;
//};
vector<signed> ha[maxn][maxn];
bool QTYPE=0;
struct Line {
mutable ll m, b, p;
bool operator<(const Line& o) const {
if (QTYPE) return p<o.p;
return m < o.m;
}
};
struct LineContainer : multiset<Line > {
const ll INF = LLONG_MAX;
ll div(ll A, ll B) {
return A / B - ((A ^ B) < 0 && A % B); }
bool isect(iterator x, iterator y) {
if (y == end()) { x->p = INF; return false; }
if (x->m == y->m) x->p = x->b > y->b ? INF : -INF;
else x->p = div(y->b - x->b, x->m - y->m);
return x->p >= y->p;}
void add(ll m, ll b) {
auto z = insert({m, b, 0}), y = z++, x = y;
while (isect(y, z)) z = erase(z);
if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
while ((y = x) != begin() && (--x)->p >= y->p)
isect(x, erase(y));}
ll query(ll x) {
assert(!empty());
QTYPE=1; auto l = *lower_bound({0,0,x}); QTYPE = 0;
return l.m * x + l.b; }
};
signed main(){
IOS();
int n,q; cin>>n>>q;
REP(i,n) {
int t,a,b,c; cin>>t>>a>>b>>c;
if (a < b) {
// down segment
dseg.pb({t+a, t+b-a+b, t-a, c});
bug("down", t-a, t+a, t+b-a+b);
bug(c);
}else{
// right seg
rseg.pb({t-a, t+(a-b)-b, t+a, c});
bug("right", t+a, t-a, t+(a-b)-b);
bug(c);
}
}
for (auto s : dseg) {
dax.pb(s.h);
rax.pb(s.l);
rax.pb(s.r);
}
for (auto s : rseg) {
rax.pb(s.h);
dax.pb(s.l);
dax.pb(s.r);
}
SORT_UNIQUE(rax);
SORT_UNIQUE(dax);
auto getr = [&](ll x) {return lower_bound(ALL(rax), x) - rax.begin();};
auto getd = [&](ll x) {return lower_bound(ALL(dax), x) - dax.begin();};
for (auto s : dseg) {
// work on dw array
int L = getr(s.l), R = getr(s.r);
int H = getd(s.h);
for (int i = L; i<R; ++i) {
MX(dw[i][H], s.c);
}
}
for (auto s : rseg) {
// work on rt array
int L = getd(s.l), R = getd(s.r);
int H = getr(s.h);
for (int i = L; i<R; ++i) {
MX(rt[H][i], s.c);
}
}
int N = SZ(rax), M = SZ(dax);
for (int i = N-1; i>=0; --i) for (int j = M-1; j>=0; --j) {
if (i + 1 < N) {
MX(dp[i][j], dp[i+1][j] + (rax[i+1] - rax[i])*dw[i][j]);
}
if (j + 1 < M) {
MX(dp[i][j], dp[i][j+1] + (dax[j+1] - dax[j])*rt[i][j]);
}
bug(i,j,rax[i],dax[j],dp[i][j]);
}
vector<int> qR(q), qC(q);
REP(i, q) {
int t,x; cin>>t>>x;
int r = t+x, c = t-x;
tie(qR[i], qC[i]) = {r,c};
int dpos = getd(c), rpos = getr(r);
if (dpos >= M || rpos >= N) continue;
bug(r,c,dpos,rpos);
ha[rpos][dpos].pb(i);
// dask[rpos][dpos].pb({dax[dpos] - c, i});
// rask[rpos][dpos].pb({rax[rpos] - r, i});
}
REP(i,N) {
LineContainer hull;
for (int j = M-1; j>=0; --j) {
hull.add(i?dw[i-1][j]:0, dp[i][j]);
for (int it : ha[i][j]) {
int df = rax[i] - qR[it];
// bug(aa.i, aa.df, hull.query(aa.df));
MX(ans[it], hull.query(df));
}
}
}
REP(j,M) {
LineContainer hull;
for (int i = N-1; i>=0; --i) {
hull.add(j?rt[i][j-1]:0, dp[i][j]);
for (int it : ha[i][j]) {
int df = dax[j] - qC[it];
// bug(aa.i, aa.df, hull.query(aa.df));
MX(ans[it], hull.query(df));
}
}
}
REP(i,q) {
cout<<ans[i]/2<<endl;
}
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5386 ms |
1070948 KB |
Output is correct |
2 |
Correct |
5384 ms |
1070640 KB |
Output is correct |
3 |
Correct |
2021 ms |
913060 KB |
Output is correct |
4 |
Correct |
1456 ms |
844552 KB |
Output is correct |
5 |
Correct |
4116 ms |
1127428 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3472 ms |
1040192 KB |
Output is correct |
2 |
Correct |
3611 ms |
1039572 KB |
Output is correct |
3 |
Correct |
3234 ms |
1043644 KB |
Output is correct |
4 |
Correct |
352 ms |
738564 KB |
Output is correct |
5 |
Correct |
3180 ms |
977684 KB |
Output is correct |
6 |
Correct |
3205 ms |
947132 KB |
Output is correct |
7 |
Correct |
3054 ms |
977352 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3472 ms |
1040192 KB |
Output is correct |
2 |
Correct |
3611 ms |
1039572 KB |
Output is correct |
3 |
Correct |
3234 ms |
1043644 KB |
Output is correct |
4 |
Correct |
352 ms |
738564 KB |
Output is correct |
5 |
Correct |
3180 ms |
977684 KB |
Output is correct |
6 |
Correct |
3205 ms |
947132 KB |
Output is correct |
7 |
Correct |
3054 ms |
977352 KB |
Output is correct |
8 |
Correct |
3406 ms |
1040076 KB |
Output is correct |
9 |
Correct |
3291 ms |
1039892 KB |
Output is correct |
10 |
Correct |
3131 ms |
1042732 KB |
Output is correct |
11 |
Correct |
355 ms |
738684 KB |
Output is correct |
12 |
Correct |
2961 ms |
977876 KB |
Output is correct |
13 |
Correct |
2956 ms |
947232 KB |
Output is correct |
14 |
Correct |
3166 ms |
977828 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3472 ms |
1040192 KB |
Output is correct |
2 |
Correct |
3611 ms |
1039572 KB |
Output is correct |
3 |
Correct |
3234 ms |
1043644 KB |
Output is correct |
4 |
Correct |
352 ms |
738564 KB |
Output is correct |
5 |
Correct |
3180 ms |
977684 KB |
Output is correct |
6 |
Correct |
3205 ms |
947132 KB |
Output is correct |
7 |
Correct |
3054 ms |
977352 KB |
Output is correct |
8 |
Correct |
3406 ms |
1040076 KB |
Output is correct |
9 |
Correct |
3291 ms |
1039892 KB |
Output is correct |
10 |
Correct |
3131 ms |
1042732 KB |
Output is correct |
11 |
Correct |
355 ms |
738684 KB |
Output is correct |
12 |
Correct |
2961 ms |
977876 KB |
Output is correct |
13 |
Correct |
2956 ms |
947232 KB |
Output is correct |
14 |
Correct |
3166 ms |
977828 KB |
Output is correct |
15 |
Correct |
3258 ms |
1043624 KB |
Output is correct |
16 |
Correct |
3279 ms |
1043956 KB |
Output is correct |
17 |
Correct |
3190 ms |
1046820 KB |
Output is correct |
18 |
Correct |
367 ms |
740568 KB |
Output is correct |
19 |
Correct |
3019 ms |
979904 KB |
Output is correct |
20 |
Correct |
2990 ms |
949392 KB |
Output is correct |
21 |
Correct |
3194 ms |
979848 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
5386 ms |
1070948 KB |
Output is correct |
2 |
Correct |
5384 ms |
1070640 KB |
Output is correct |
3 |
Correct |
2021 ms |
913060 KB |
Output is correct |
4 |
Correct |
1456 ms |
844552 KB |
Output is correct |
5 |
Correct |
4116 ms |
1127428 KB |
Output is correct |
6 |
Correct |
3472 ms |
1040192 KB |
Output is correct |
7 |
Correct |
3611 ms |
1039572 KB |
Output is correct |
8 |
Correct |
3234 ms |
1043644 KB |
Output is correct |
9 |
Correct |
352 ms |
738564 KB |
Output is correct |
10 |
Correct |
3180 ms |
977684 KB |
Output is correct |
11 |
Correct |
3205 ms |
947132 KB |
Output is correct |
12 |
Correct |
3054 ms |
977352 KB |
Output is correct |
13 |
Correct |
3406 ms |
1040076 KB |
Output is correct |
14 |
Correct |
3291 ms |
1039892 KB |
Output is correct |
15 |
Correct |
3131 ms |
1042732 KB |
Output is correct |
16 |
Correct |
355 ms |
738684 KB |
Output is correct |
17 |
Correct |
2961 ms |
977876 KB |
Output is correct |
18 |
Correct |
2956 ms |
947232 KB |
Output is correct |
19 |
Correct |
3166 ms |
977828 KB |
Output is correct |
20 |
Correct |
3258 ms |
1043624 KB |
Output is correct |
21 |
Correct |
3279 ms |
1043956 KB |
Output is correct |
22 |
Correct |
3190 ms |
1046820 KB |
Output is correct |
23 |
Correct |
367 ms |
740568 KB |
Output is correct |
24 |
Correct |
3019 ms |
979904 KB |
Output is correct |
25 |
Correct |
2990 ms |
949392 KB |
Output is correct |
26 |
Correct |
3194 ms |
979848 KB |
Output is correct |
27 |
Correct |
7736 ms |
1290400 KB |
Output is correct |
28 |
Correct |
7071 ms |
1285132 KB |
Output is correct |
29 |
Correct |
4995 ms |
1230176 KB |
Output is correct |
30 |
Correct |
1429 ms |
887796 KB |
Output is correct |
31 |
Correct |
4445 ms |
1085732 KB |
Output is correct |
32 |
Correct |
4873 ms |
1118516 KB |
Output is correct |
33 |
Correct |
4029 ms |
1132892 KB |
Output is correct |