Submission #564724

# Submission time Handle Problem Language Result Execution time Memory
564724 2022-05-19T14:05:09 Z DanShaders Broken Device 2 (JOI22_device2) C++17
96 / 100
246 ms 3136 KB
//bs:sanitizers,flags:grader.cpp
#include "Anna.h"
#include "Bruno.h"

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;

namespace x = __gnu_pbds;
template <typename T>
using ordered_set = x::tree<T, x::null_type, less<T>, x::rb_tree_tag, x::tree_order_statistics_node_update>;

template <typename T>
using normal_queue = priority_queue<T, vector<T>, greater<>>;

#define all(x) begin(x), end(x)
#define sz(x) ((int) (x).size())
#define x first
#define y second
using ll = long long;
using ld = long double;

const int LEN = 145, N = LEN + 1;

bool inited = false;
ll dp[N];

int Declare() {
	if (inited) {
		return LEN;
	}
	inited = true;
	
	dp[1] = 1;
	for (int i = 3; i < N; ++i) {
		dp[i] = dp[i - 2] + dp[i - 3];
	}

	return LEN;
}

pair<vector<int>, vector<int>> Anna(ll n) {
	bool parity = n & 1;
	n /= 2;
	int len = 0;
	while (n >= dp[len]) {
		n -= dp[len];
		++len;
	}
	vector<int> u;
	while (len > 1) {
		if (n >= dp[len - 2]) {
			u.push_back(1);
			n -= dp[len - 2];
			len -= 3;
		} else {
			u.push_back(0);
			len -= 2;
		}
	}

	// for (int x : u) {
	// 	cout << x << " ";
	// }
	// cout << endl;

	vector<int> s = {1};
	for (int i : u) {
		if (i) {
			s.push_back(s.back() ^ 1);
		}
		s.push_back(s.back());
		s.push_back(s.back());
	}

	// for (int x : s) {
	// 	cout << x;
	// }
	// cout << endl;
	

	while (sz(s) < Declare()) {
		s.push_back(s.back() ^ 1);
	}

	vector<int> t = {!parity};
	while (sz(t) != sz(s)) {
		t.push_back(t.back() ^ 1);
	}

	// for (int x : s) {
	// 	cout << x;
	// }
	// cout << endl;
	// for (int x : t) {
	// 	cout << x << " ";
	// }
	// cout << endl;
	if (parity) {
		for (int &x : s) {
			x ^= 1;
		}
	}
	return {s, t};
}

vector<pair<int, int>> path;

#define TRY(x) do { if (x) { return true; }} while (false);

int n;
char d[2][N][N];

bool recover(const vector<int> &a, int i, int tlen, int cnt) {
	{
		int trem = n - tlen;
		int srem = n - i + tlen;
		int prv = sz(path) ? path.back().x : 1;
		if (!cnt && d[prv ^ (srem & 1)][trem][srem]) {
			return true;
		}
	}
	if (i > sz(a) || tlen > n) {
		return false;
	}

	if (a[i] != (tlen & 1)) {
		TRY(recover(a, i + 1, tlen + 1, cnt));
	}
	if (cnt) {
		if (path.back().x != a[i]) {
			return false;
		}
		TRY(recover(a, i + 1, tlen, cnt - 1));
	} else {
		int prv = 1;
		if (sz(path)) {
			prv = path.back().x;
		}
		path.push_back({a[i], a[i] != prv});
		TRY(recover(a, i + 1, tlen, a[i] == prv ? 1 : 2));
		path.pop_back();
	}
	return false;
}

ll Bruno(vector<int> a) {
	int parity = !a[0];
	if (parity) {
		for (int &x : a) {
			x ^= 1;
		}
	}
	Declare();
	n = sz(a) / 2;
	path.clear();
	
	fill_n(d[0][0], 2 * N * N, 0);
	d[0][0][0] = d[1][0][0] = 1;
	
	int o1 = n & 1;
	for (int o2 = 0; o2 < 2; ++o2) {
		for (int i = 0; i <= n; ++i) {
			for (int j = 0; j <= n; ++j) {
				if (i && ((i & 1) ^ o1) != a[sz(a) - i - j]) {
					d[o2][i][j] = d[o2][i - 1][j];
				}
				if (j && ((j & 1) ^ o2) != a[sz(a) - i - j]) {
					d[o2][i][j] |= d[o2][i][j - 1];
				}
			}
		}
	}
	// for (int x : a) {
	// 	cout << x;
	// }
	// cout << endl;
	// cout << d[1][145][144] << endl;
	if (!recover(a, 1, 0, 0)) {
		path.push_back({1, -1});
		assert(recover(a, 0, 0, 1));
		path.erase(path.begin());
	}
	// for (auto u : path) {
	// 	cout << u.y << " ";
	// }
	// cout << endl;
	// for (auto [_, x] : path) {
	// 	cout << x << " ";
	// }
	// cout << endl;
	int rlen = 1;
	for (auto u : path) {
		rlen += u.y + 2;
	}
	ll ans = 0;
	for (int i = 0; i < rlen; ++i) {
		ans += dp[i];
	}
	for (int i = 0; rlen > 1; ++i) {
		if (path[i].y) {
			ans += dp[rlen - 2];
			rlen -= 3;
		} else {
			rlen -= 2;
		}
	}
	return ans * 2 + parity;
}
//bs:sanitizers,flags:grader.cpp
#include "Anna.h"
#include "Bruno.h"

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
using namespace std;

namespace x = __gnu_pbds;
template <typename T>
using ordered_set = x::tree<T, x::null_type, less<T>, x::rb_tree_tag, x::tree_order_statistics_node_update>;

template <typename T>
using normal_queue = priority_queue<T, vector<T>, greater<>>;

#define all(x) begin(x), end(x)
#define sz(x) ((int) (x).size())
#define x first
#define y second
using ll = long long;
using ld = long double;

const int LEN = 145, N = LEN + 1;

bool inited = false;
ll dp[N];

int Declare() {
	if (inited) {
		return LEN;
	}
	inited = true;
	
	dp[1] = 1;
	for (int i = 3; i < N; ++i) {
		dp[i] = dp[i - 2] + dp[i - 3];
	}

	return LEN;
}

pair<vector<int>, vector<int>> Anna(ll n) {
	bool parity = n & 1;
	n /= 2;
	int len = 0;
	while (n >= dp[len]) {
		n -= dp[len];
		++len;
	}
	vector<int> u;
	while (len > 1) {
		if (n >= dp[len - 2]) {
			u.push_back(1);
			n -= dp[len - 2];
			len -= 3;
		} else {
			u.push_back(0);
			len -= 2;
		}
	}

	// for (int x : u) {
	// 	cout << x << " ";
	// }
	// cout << endl;

	vector<int> s = {1};
	for (int i : u) {
		if (i) {
			s.push_back(s.back() ^ 1);
		}
		s.push_back(s.back());
		s.push_back(s.back());
	}

	// for (int x : s) {
	// 	cout << x;
	// }
	// cout << endl;
	

	while (sz(s) < Declare()) {
		s.push_back(s.back() ^ 1);
	}

	vector<int> t = {!parity};
	while (sz(t) != sz(s)) {
		t.push_back(t.back() ^ 1);
	}

	// for (int x : s) {
	// 	cout << x;
	// }
	// cout << endl;
	// for (int x : t) {
	// 	cout << x << " ";
	// }
	// cout << endl;
	if (parity) {
		for (int &x : s) {
			x ^= 1;
		}
	}
	return {s, t};
}

vector<pair<int, int>> path;

#define TRY(x) do { if (x) { return true; }} while (false);

int n;
char d[2][N][N];

bool recover(const vector<int> &a, int i, int tlen, int cnt) {
	{
		int trem = n - tlen;
		int srem = n - i + tlen;
		int prv = sz(path) ? path.back().x : 1;
		if (!cnt && d[prv ^ (srem & 1)][trem][srem]) {
			return true;
		}
	}
	if (i > sz(a) || tlen > n) {
		return false;
	}

	if (a[i] != (tlen & 1)) {
		TRY(recover(a, i + 1, tlen + 1, cnt));
	}
	if (cnt) {
		if (path.back().x != a[i]) {
			return false;
		}
		TRY(recover(a, i + 1, tlen, cnt - 1));
	} else {
		int prv = 1;
		if (sz(path)) {
			prv = path.back().x;
		}
		path.push_back({a[i], a[i] != prv});
		TRY(recover(a, i + 1, tlen, a[i] == prv ? 1 : 2));
		path.pop_back();
	}
	return false;
}

ll Bruno(vector<int> a) {
	int parity = !a[0];
	if (parity) {
		for (int &x : a) {
			x ^= 1;
		}
	}
	Declare();
	n = sz(a) / 2;
	path.clear();
	
	fill_n(d[0][0], 2 * N * N, 0);
	d[0][0][0] = d[1][0][0] = 1;
	
	int o1 = n & 1;
	for (int o2 = 0; o2 < 2; ++o2) {
		for (int i = 0; i <= n; ++i) {
			for (int j = 0; j <= n; ++j) {
				if (i && ((i & 1) ^ o1) != a[sz(a) - i - j]) {
					d[o2][i][j] = d[o2][i - 1][j];
				}
				if (j && ((j & 1) ^ o2) != a[sz(a) - i - j]) {
					d[o2][i][j] |= d[o2][i][j - 1];
				}
			}
		}
	}
	// for (int x : a) {
	// 	cout << x;
	// }
	// cout << endl;
	// cout << d[1][145][144] << endl;
	if (!recover(a, 1, 0, 0)) {
		path.push_back({1, -1});
		assert(recover(a, 0, 0, 1));
		path.erase(path.begin());
	}
	// for (auto u : path) {
	// 	cout << u.y << " ";
	// }
	// cout << endl;
	// for (auto [_, x] : path) {
	// 	cout << x << " ";
	// }
	// cout << endl;
	int rlen = 1;
	for (auto u : path) {
		rlen += u.y + 2;
	}
	ll ans = 0;
	for (int i = 0; i < rlen; ++i) {
		ans += dp[i];
	}
	for (int i = 0; rlen > 1; ++i) {
		if (path[i].y) {
			ans += dp[rlen - 2];
			rlen -= 3;
		} else {
			rlen -= 2;
		}
	}
	return ans * 2 + parity;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 640 KB Output is correct
2 Correct 179 ms 2972 KB Output is correct
3 Correct 181 ms 3088 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 640 KB Output is correct
2 Correct 179 ms 2972 KB Output is correct
3 Correct 181 ms 3088 KB Output is correct
4 Correct 213 ms 2948 KB Output is correct
5 Correct 193 ms 3020 KB Output is correct
6 Correct 191 ms 2964 KB Output is correct
7 Correct 186 ms 2980 KB Output is correct
8 Correct 193 ms 2948 KB Output is correct
9 Correct 198 ms 2968 KB Output is correct
10 Correct 183 ms 2964 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 640 KB Output is correct
2 Correct 179 ms 2972 KB Output is correct
3 Correct 181 ms 3088 KB Output is correct
4 Correct 213 ms 2948 KB Output is correct
5 Correct 193 ms 3020 KB Output is correct
6 Correct 191 ms 2964 KB Output is correct
7 Correct 186 ms 2980 KB Output is correct
8 Correct 193 ms 2948 KB Output is correct
9 Correct 198 ms 2968 KB Output is correct
10 Correct 183 ms 2964 KB Output is correct
11 Correct 188 ms 3064 KB Output is correct
12 Correct 189 ms 3000 KB Output is correct
13 Correct 193 ms 2932 KB Output is correct
14 Correct 202 ms 3000 KB Output is correct
15 Correct 193 ms 3064 KB Output is correct
16 Correct 187 ms 3068 KB Output is correct
17 Correct 174 ms 3060 KB Output is correct
18 Correct 194 ms 3000 KB Output is correct
19 Correct 192 ms 2972 KB Output is correct
20 Correct 203 ms 2984 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 640 KB Output is correct
2 Correct 179 ms 2972 KB Output is correct
3 Correct 181 ms 3088 KB Output is correct
4 Correct 213 ms 2948 KB Output is correct
5 Correct 193 ms 3020 KB Output is correct
6 Correct 191 ms 2964 KB Output is correct
7 Correct 186 ms 2980 KB Output is correct
8 Correct 193 ms 2948 KB Output is correct
9 Correct 198 ms 2968 KB Output is correct
10 Correct 183 ms 2964 KB Output is correct
11 Correct 188 ms 3064 KB Output is correct
12 Correct 189 ms 3000 KB Output is correct
13 Correct 193 ms 2932 KB Output is correct
14 Correct 202 ms 3000 KB Output is correct
15 Correct 193 ms 3064 KB Output is correct
16 Correct 187 ms 3068 KB Output is correct
17 Correct 174 ms 3060 KB Output is correct
18 Correct 194 ms 3000 KB Output is correct
19 Correct 192 ms 2972 KB Output is correct
20 Correct 203 ms 2984 KB Output is correct
21 Correct 192 ms 3028 KB Output is correct
22 Correct 193 ms 2976 KB Output is correct
23 Correct 191 ms 2936 KB Output is correct
24 Correct 189 ms 2952 KB Output is correct
25 Correct 190 ms 2972 KB Output is correct
26 Correct 191 ms 3052 KB Output is correct
27 Correct 185 ms 3000 KB Output is correct
28 Correct 199 ms 2940 KB Output is correct
29 Correct 190 ms 3068 KB Output is correct
30 Correct 188 ms 3012 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 640 KB Output is correct
2 Correct 179 ms 2972 KB Output is correct
3 Correct 181 ms 3088 KB Output is correct
4 Correct 213 ms 2948 KB Output is correct
5 Correct 193 ms 3020 KB Output is correct
6 Correct 191 ms 2964 KB Output is correct
7 Correct 186 ms 2980 KB Output is correct
8 Correct 193 ms 2948 KB Output is correct
9 Correct 198 ms 2968 KB Output is correct
10 Correct 183 ms 2964 KB Output is correct
11 Correct 188 ms 3064 KB Output is correct
12 Correct 189 ms 3000 KB Output is correct
13 Correct 193 ms 2932 KB Output is correct
14 Correct 202 ms 3000 KB Output is correct
15 Correct 193 ms 3064 KB Output is correct
16 Correct 187 ms 3068 KB Output is correct
17 Correct 174 ms 3060 KB Output is correct
18 Correct 194 ms 3000 KB Output is correct
19 Correct 192 ms 2972 KB Output is correct
20 Correct 203 ms 2984 KB Output is correct
21 Correct 192 ms 3028 KB Output is correct
22 Correct 193 ms 2976 KB Output is correct
23 Correct 191 ms 2936 KB Output is correct
24 Correct 189 ms 2952 KB Output is correct
25 Correct 190 ms 2972 KB Output is correct
26 Correct 191 ms 3052 KB Output is correct
27 Correct 185 ms 3000 KB Output is correct
28 Correct 199 ms 2940 KB Output is correct
29 Correct 190 ms 3068 KB Output is correct
30 Correct 188 ms 3012 KB Output is correct
31 Correct 191 ms 2968 KB Output is correct
32 Correct 212 ms 3108 KB Output is correct
33 Correct 209 ms 3016 KB Output is correct
34 Correct 201 ms 3000 KB Output is correct
35 Correct 204 ms 2980 KB Output is correct
36 Correct 229 ms 2948 KB Output is correct
37 Correct 191 ms 3016 KB Output is correct
38 Correct 205 ms 3076 KB Output is correct
39 Correct 205 ms 3132 KB Output is correct
40 Correct 200 ms 3008 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 211 ms 3060 KB Output is partially correct
2 Partially correct 219 ms 3072 KB Output is partially correct
3 Partially correct 220 ms 2956 KB Output is partially correct
4 Partially correct 231 ms 3064 KB Output is partially correct
5 Partially correct 239 ms 3136 KB Output is partially correct
6 Partially correct 219 ms 3016 KB Output is partially correct
7 Partially correct 237 ms 3096 KB Output is partially correct
8 Partially correct 230 ms 3008 KB Output is partially correct
9 Partially correct 246 ms 2952 KB Output is partially correct
10 Partially correct 221 ms 3132 KB Output is partially correct
11 Partially correct 206 ms 2984 KB Output is partially correct
12 Partially correct 227 ms 2952 KB Output is partially correct
13 Partially correct 219 ms 3044 KB Output is partially correct
14 Partially correct 196 ms 2972 KB Output is partially correct
15 Partially correct 208 ms 3076 KB Output is partially correct
16 Partially correct 198 ms 2960 KB Output is partially correct
17 Partially correct 204 ms 3096 KB Output is partially correct
18 Partially correct 202 ms 3084 KB Output is partially correct
19 Partially correct 198 ms 3004 KB Output is partially correct
20 Partially correct 201 ms 2968 KB Output is partially correct