This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <cassert>
using namespace std;
int N;
struct Segment {
int index, sortedIndex;
int start, length;
set<Segment*> enclosedSegments;
bool direction;
Segment(int index, int start, int length) :
index(index),
start(start),
length(length),
direction(0) {
}
// Check if this segment is completely inside another segment
bool isSubsetOf(const Segment& other) const {
int relativeStart = (start - other.start + N) % N;
return relativeStart + length <= other.length;
}
// Set direction of all children in the opposite direction to this node
void assignChildren() {
for (Segment* child : enclosedSegments) {
child->direction = !direction;
}
}
// Set direction of this node and direction of all children in the opposite direction
void assign(bool newDirection) {
direction = newDirection;
assignChildren();
}
};
// Assign the children of each given segment in the opposite direction to the parent
void assignChildren(vector<Segment>& segments) {
for (Segment& segment : segments) {
segment.assignChildren();
}
}
// Assign the given segments alternating directions, starting from startIndex
// Note that if independentSegments has an odd number of elements then
// independentSegments[startIndex-1] and independentSegments[startIndex] are
// assigned the same direction
void assignAlternating(vector<Segment*>& independentSegments, int startIndex) {
for (size_t i = 0; i < independentSegments.size(); i++) {
size_t j = (i + startIndex) % independentSegments.size();
independentSegments[j]->assign(i%2);
}
}
// Returns whether the interval between the beginning of the segment with
// index startIndex and the beginning of the segment with index endIndex
// is completely covered in the given direction
bool checkPartialSolution(const vector<Segment>& segments, size_t startIndex, size_t endIndex, bool direction) {
size_t n = segments.size();
int hi = segments[startIndex].start;
size_t length = ((endIndex - startIndex + n - 1) % n) + 1;
for (size_t i = 0; i < length; i++) {
size_t j = (i+startIndex) % n;
if (segments[j].direction != direction) {
continue;
}
int start = segments[j].start;
if (j < startIndex) {
start += N;
}
if (start > hi) {
return false;
}
int end = start + segments[j].length;
hi = max(hi, end);
}
int start = segments[endIndex].start;
if (endIndex <= startIndex) {
start += N;
}
return start <= hi;
}
// Returns whether the given solution covers the whole circle
bool checkSolution(const vector<Segment>& segments) {
for (int direction = 0; direction < 2; direction++) {
size_t n = segments.size();
int hi = 0;
for (size_t i = 0; i < 2*n; i++) {
size_t j = i%n;
if (segments[j].direction != direction) {
continue;
}
int start = segments[j].start;
if (i < n) {
start -= N;
}
if (start > hi) {
return false;
}
int end = start + segments[j].length;
hi = max(hi, end);
}
if (hi < N) {
return false;
}
}
return true;
}
void printSolution(const vector<Segment>& segments) {
vector<bool> directions(segments.size());
for (const Segment& segment : segments) {
directions[segment.index] = segment.direction;
}
for (bool d : directions) {
cout << d;
}
cout << endl;
}
int main() {
ios::sync_with_stdio(0);
int M;
cin >> N >> M;
vector<Segment> segments;
for (int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
segments.emplace_back(i, a-1, ((b-a+N)%N)+1);
}
sort(segments.begin(), segments.end(), [](const Segment& a, const Segment& b) -> bool {
if (a.start == b.start) {
return a.length > b.length;
}
return a.start < b.start;
});
for (int i = 0; i < M; i++) {
segments[i].sortedIndex = i;
}
vector<Segment*> independentSegments;
Segment* lastSegment = &segments[0];
for (int i = 1; i < 2*M; i++) {
int j = i%M;
Segment* currentSegment = &segments[j];
if (currentSegment != lastSegment && currentSegment->isSubsetOf(*lastSegment)) {
lastSegment->enclosedSegments.insert(currentSegment);
}
else {
lastSegment = currentSegment;
if (i >= M) {
independentSegments.push_back(lastSegment);
}
}
}
if (independentSegments.size()%2 == 0) {
assignAlternating(independentSegments, 0);
assignChildren(segments);
if (checkSolution(segments)) {
printSolution(segments);
}
else {
cout << "impossible" << endl;
}
}
else {
for (size_t i = 0; i < independentSegments.size(); i++) {
auto A = independentSegments[(i+0)%independentSegments.size()];
auto B = independentSegments[(i+1)%independentSegments.size()];
auto C = independentSegments[(i+2)%independentSegments.size()];
auto D = independentSegments[(i+3)%independentSegments.size()];
A->assign(0);
D->assign(0);
B->assign(1);
C->assign(1);
if (checkPartialSolution(segments, A->sortedIndex, D->sortedIndex, 0)) {
assignAlternating(independentSegments, int((i+2)%independentSegments.size()));
assignChildren(segments);
if (checkSolution(segments)) {
printSolution(segments);
}
else {
cout << "impossible" << endl;
}
return 0;
}
}
cout << "impossible" << endl;
}
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |