Submission #557377

# Submission time Handle Problem Language Result Execution time Memory
557377 2022-05-05T08:41:03 Z nutella Land of the Rainbow Gold (APIO17_rainbow) C++17
100 / 100
1030 ms 126768 KB
#include "rainbow.h"

//#define _GLIBCXX_DEBUG

//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

#include <bits/stdc++.h>

using namespace std;

//#include <ext/pb_ds/assoc_container.hpp>
//
//using namespace __gnu_pbds;
//
//template<typename T>
//using ordered_set = tree<T, null_type, less < T>, rb_tree_tag, tree_order_statistics_node_update>;

template<typename T>
using normal_queue = priority_queue<T, vector<T>, greater<>>;

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

#define trace(x) cout << #x << ": " << (x) << endl;
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define uniq(x) x.resize(unique(all(x)) - begin(x))
#define sz(s) ((int) size(s))
#define pii pair<int, int>
#define mp(x, y) make_pair(x, y)
#define int128 __int128
#define pb push_back
#define popb pop_back
#define eb emplace_back
#define fi first
#define se second
#define itn int

typedef long long ll;
typedef pair<ll, ll> pll;
typedef long double ld;
typedef double db;
typedef unsigned int uint;


template<typename T>
bool ckmn(T &x, T y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}

template<typename T>
bool ckmx(T &x, T y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}

int bit(int x, int b) {
    return (x >> b) & 1;
}

int rand(int l, int r) { return (int) ((ll) rnd() % (r - l + 1)) + l; }


const ll infL = 3e18;
const int infI = 1000000000 + 7;
const int infM = 0x3f3f3f3f; //a little bigger than 1e9
const ll infML = 0x3f3f3f3f3f3f3f3fLL; //4.5e18

template<typename T>
void make_uniq(vector<T> &v) {
    sort(all(v));
    v.resize(unique(all(v)) - begin(v));
}

struct Fenwick {
    vector<vector<ll>> t;
    vector<vector<int>> yy;
    int n;


    Fenwick() = default;

    void init(int a) {
        n = a;
        yy.resize(n);
        for (int i = 0; i < n; ++i) yy[i].clear();
        t.resize(n);
    }

    void fake_add(int x, int y) {
        assert(x < n);
        assert(x >= 0);
        for (int i = x; i < n; i |= (i + 1))
            yy[i].pb(y);
    }

    void build() {
        for (int i = 0; i < n; ++i) {
            make_uniq(yy[i]);
            t[i].assign(sz(yy[i]) + 2, 0);
        }
    }

    void add(int x, int y) {
        assert(x < n);
        assert(x >= 0);
        for (int i = x; i < n; i |= (i + 1))
            for (int j = lower_bound(all(yy[i]), y) - begin(yy[i]); j < sz(yy[i]); j |= (j + 1))
                ++t[i][j];
    }

    ll get(int x, int y) {
        ll ans = 0;
        assert(x < n);
        for (int i = x; i > -1; i = ((i + 1) & i) - 1)
            for (int j = upper_bound(all(yy[i]), y) - begin(yy[i]) - 1; j > -1; j = ((j + 1) & j) - 1)
                ans += t[i][j];
        return ans;
    }

    ll get(int x1, int y1, int x2, int y2) {
        if (x1 > x2 || y1 > y2) return 0;
        return get(x2, y2) - get(x1 - 1, y2) - get(x2, y1 - 1) + get(x1 - 1, y1 - 1);
    }

};

const int dx[4] = {0, 1, 0, -1};

const int dy[4] = {1, 0, -1, 0};
int n, m;
vector<pair<int, int>> yy;

Fenwick fx, fy, fv, cv;
int mnx = infI, mny = infI, mxx = -infI, mxy = -infI;

auto here = [](int x, int y) -> int {
    auto it = lower_bound(all(yy), mp(x, y));
    if (it == end(yy)) return false;
    return (*it) == mp(x, y);
};


void init(int R, int C, int sr, int sc, int M, char *S) {
    n = R, m = C;
    --sr, --sc;
    fx.init(n + 1), fy.init(n + 1), fv.init(n + 1), cv.init(n + 1);
    mnx = infI, mny = infI, mxx = -infI, mxy = -infI;
    yy.clear();
    yy = {{sr, sc}};
    for (int i = 0; i < M; ++i) {
        if (S[i] == 'N') --sr;
        else if (S[i] == 'S') ++sr;
        else if (S[i] == 'W') --sc;
        else ++sc;
        yy.emplace_back(sr, sc);
    }
    make_uniq(yy);
    mnx = infI, mny = infI, mxx = -infI, mxy = -infI;
    vector<pii > pv, px, py, cvv;
    for (auto [x, y]: yy) {
        ckmx(mxx, x);
        ckmx(mxy, y);
        ckmn(mnx, x);
        ckmn(mny, y);
        for (int i = 0; i < 4; ++i) {
            int nx = x + dx[i], ny = y + dy[i];
            if (nx == x) {
                if (ny >= 0) {
                    py.emplace_back(x, min(y, ny));
                    pv.emplace_back(x, max(y, ny)), pv.emplace_back(x + 1, max(y, ny));
                }
            } else {
                if (nx >= 0) {
                    px.emplace_back(min(nx, x), y);
                    pv.emplace_back(max(nx, x), y), pv.emplace_back(max(nx, x), y + 1);
                }
            }
        }
        cvv.emplace_back(x, y);
    }

    make_uniq(pv), make_uniq(px), make_uniq(py), make_uniq(cvv);

    for (auto [x, y]: pv)
        fv.fake_add(x, y);
    for (auto [x, y]: px)
        fx.fake_add(x, y);
    for (auto [x, y]: py)
        fy.fake_add(x, y);
    for (auto [x, y]: cvv)
        cv.fake_add(x, y);

    fv.build(), fx.build(), fy.build(), cv.build();

    for (auto [x, y]: pv){
//        cout << x << " " << y << endl;
        fv.add(x, y);
    }
    for (auto [x, y]: px)
        fx.add(x, y);
    for (auto [x, y]: py)
        fy.add(x, y);
    for (auto [x, y]: cvv)
        cv.add(x, y);
}

int smart(int ar, int ac, int br, int bc) {
    int x1 = ar, y1 = ac, x2 = br, y2 = bc;
    --x1, --y1;
    ll C = 1 + (mnx > x1 && mxx < x2 - 1 && mny > y1 && mxy < y2 - 1);
    ll V = (x2 - x1) * 2 + (y2 - y1) * 2 + fv.get(x1 + 1, y1 + 1, x2 - 1, y2 - 1);
    ll E = (x2 - x1) * 2 + (y2 - y1) * 2 + fx.get(x1, y1, x2 - 2, y2 - 1) + fy.get(x1, y1, x2 - 1, y2 - 2);
    ll U = cv.get(x1, y1, x2 - 1, y2 - 1);
    ll F = E - V + C + 1;
    return int(F - U - 1);
}

int stupid(int x1, int y1, int x2, int y2) {
    --x1, --y1;
    --x2, --y2;
    assert(x1 <= x2 && y1 <= y2);
    set<pii > used;
    ll C = 0;
    function<void(int, int)> dfs = [&](int x, int y) {
        if (used.count(mp(x, y))) return;
        used.insert(mp(x, y));
        for (int i = 0; i < 4; ++i) {
            int nx = x + dx[i], ny = y + dy[i];
            if (!here(nx, ny) && x1 <= nx && nx <= x2 && y1 <= ny && ny <= y2) {
                dfs(nx, ny);
            }
        }
    };
    for (int x = x1; x <= x2; ++x) {
        for (int y = y1; y <= y2; ++y) {
            if (!here(x, y) && !used.count(mp(x, y))) {
                ++C;
                dfs(x, y);
            }
        }
    }
    return int(C);
}

int colour(int ar, int ac, int br, int bc) {
    int x1 = ar, y1 = ac, x2 = br, y2 = bc;
    int sm = smart(x1, y1, x2, y2);
    return sm;
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 340 KB Output is correct
2 Correct 5 ms 596 KB Output is correct
3 Correct 3 ms 340 KB Output is correct
4 Correct 3 ms 340 KB Output is correct
5 Correct 6 ms 572 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 308 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 3 ms 468 KB Output is correct
12 Correct 3 ms 516 KB Output is correct
13 Correct 5 ms 704 KB Output is correct
14 Correct 6 ms 724 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 218 ms 12248 KB Output is correct
4 Correct 292 ms 21324 KB Output is correct
5 Correct 280 ms 21020 KB Output is correct
6 Correct 246 ms 16420 KB Output is correct
7 Correct 245 ms 15456 KB Output is correct
8 Correct 62 ms 4520 KB Output is correct
9 Correct 307 ms 21268 KB Output is correct
10 Correct 291 ms 20868 KB Output is correct
11 Correct 252 ms 16452 KB Output is correct
12 Correct 206 ms 19236 KB Output is correct
13 Correct 203 ms 21272 KB Output is correct
14 Correct 207 ms 20968 KB Output is correct
15 Correct 185 ms 16268 KB Output is correct
16 Correct 236 ms 15056 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 696 ms 126536 KB Output is correct
3 Correct 272 ms 107784 KB Output is correct
4 Correct 597 ms 122920 KB Output is correct
5 Correct 343 ms 103188 KB Output is correct
6 Correct 178 ms 72876 KB Output is correct
7 Correct 248 ms 79144 KB Output is correct
8 Correct 157 ms 20668 KB Output is correct
9 Correct 175 ms 19672 KB Output is correct
10 Correct 85 ms 37112 KB Output is correct
11 Correct 141 ms 44220 KB Output is correct
12 Correct 684 ms 126568 KB Output is correct
13 Correct 279 ms 107860 KB Output is correct
14 Correct 574 ms 123108 KB Output is correct
15 Correct 350 ms 103180 KB Output is correct
16 Correct 151 ms 71336 KB Output is correct
17 Correct 274 ms 82688 KB Output is correct
18 Correct 688 ms 118448 KB Output is correct
19 Correct 483 ms 115844 KB Output is correct
20 Correct 565 ms 123076 KB Output is correct
21 Correct 159 ms 20560 KB Output is correct
22 Correct 178 ms 19732 KB Output is correct
23 Correct 89 ms 37196 KB Output is correct
24 Correct 145 ms 44220 KB Output is correct
25 Correct 676 ms 126724 KB Output is correct
26 Correct 271 ms 107736 KB Output is correct
27 Correct 575 ms 123052 KB Output is correct
28 Correct 345 ms 103272 KB Output is correct
29 Correct 146 ms 71336 KB Output is correct
30 Correct 275 ms 82644 KB Output is correct
31 Correct 656 ms 118224 KB Output is correct
32 Correct 471 ms 115796 KB Output is correct
33 Correct 536 ms 123064 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 340 KB Output is correct
2 Correct 5 ms 596 KB Output is correct
3 Correct 3 ms 340 KB Output is correct
4 Correct 3 ms 340 KB Output is correct
5 Correct 6 ms 572 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 308 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 3 ms 468 KB Output is correct
12 Correct 3 ms 516 KB Output is correct
13 Correct 5 ms 704 KB Output is correct
14 Correct 6 ms 724 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 721 ms 17096 KB Output is correct
19 Correct 260 ms 4508 KB Output is correct
20 Correct 178 ms 3852 KB Output is correct
21 Correct 220 ms 4044 KB Output is correct
22 Correct 228 ms 4260 KB Output is correct
23 Correct 246 ms 4444 KB Output is correct
24 Correct 229 ms 3964 KB Output is correct
25 Correct 227 ms 4100 KB Output is correct
26 Correct 235 ms 4328 KB Output is correct
27 Correct 326 ms 13984 KB Output is correct
28 Correct 286 ms 10028 KB Output is correct
29 Correct 321 ms 13676 KB Output is correct
30 Correct 661 ms 33056 KB Output is correct
31 Correct 3 ms 340 KB Output is correct
32 Correct 490 ms 15224 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 340 KB Output is correct
2 Correct 5 ms 596 KB Output is correct
3 Correct 3 ms 340 KB Output is correct
4 Correct 3 ms 340 KB Output is correct
5 Correct 6 ms 572 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 308 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 3 ms 468 KB Output is correct
12 Correct 3 ms 516 KB Output is correct
13 Correct 5 ms 704 KB Output is correct
14 Correct 6 ms 724 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 721 ms 17096 KB Output is correct
19 Correct 260 ms 4508 KB Output is correct
20 Correct 178 ms 3852 KB Output is correct
21 Correct 220 ms 4044 KB Output is correct
22 Correct 228 ms 4260 KB Output is correct
23 Correct 246 ms 4444 KB Output is correct
24 Correct 229 ms 3964 KB Output is correct
25 Correct 227 ms 4100 KB Output is correct
26 Correct 235 ms 4328 KB Output is correct
27 Correct 326 ms 13984 KB Output is correct
28 Correct 286 ms 10028 KB Output is correct
29 Correct 321 ms 13676 KB Output is correct
30 Correct 661 ms 33056 KB Output is correct
31 Correct 3 ms 340 KB Output is correct
32 Correct 490 ms 15224 KB Output is correct
33 Correct 696 ms 126536 KB Output is correct
34 Correct 272 ms 107784 KB Output is correct
35 Correct 597 ms 122920 KB Output is correct
36 Correct 343 ms 103188 KB Output is correct
37 Correct 178 ms 72876 KB Output is correct
38 Correct 248 ms 79144 KB Output is correct
39 Correct 157 ms 20668 KB Output is correct
40 Correct 175 ms 19672 KB Output is correct
41 Correct 85 ms 37112 KB Output is correct
42 Correct 141 ms 44220 KB Output is correct
43 Correct 684 ms 126568 KB Output is correct
44 Correct 279 ms 107860 KB Output is correct
45 Correct 574 ms 123108 KB Output is correct
46 Correct 350 ms 103180 KB Output is correct
47 Correct 151 ms 71336 KB Output is correct
48 Correct 274 ms 82688 KB Output is correct
49 Correct 688 ms 118448 KB Output is correct
50 Correct 483 ms 115844 KB Output is correct
51 Correct 565 ms 123076 KB Output is correct
52 Correct 159 ms 20560 KB Output is correct
53 Correct 178 ms 19732 KB Output is correct
54 Correct 89 ms 37196 KB Output is correct
55 Correct 145 ms 44220 KB Output is correct
56 Correct 676 ms 126724 KB Output is correct
57 Correct 271 ms 107736 KB Output is correct
58 Correct 575 ms 123052 KB Output is correct
59 Correct 345 ms 103272 KB Output is correct
60 Correct 146 ms 71336 KB Output is correct
61 Correct 275 ms 82644 KB Output is correct
62 Correct 656 ms 118224 KB Output is correct
63 Correct 471 ms 115796 KB Output is correct
64 Correct 536 ms 123064 KB Output is correct
65 Correct 218 ms 12248 KB Output is correct
66 Correct 292 ms 21324 KB Output is correct
67 Correct 280 ms 21020 KB Output is correct
68 Correct 246 ms 16420 KB Output is correct
69 Correct 245 ms 15456 KB Output is correct
70 Correct 62 ms 4520 KB Output is correct
71 Correct 307 ms 21268 KB Output is correct
72 Correct 291 ms 20868 KB Output is correct
73 Correct 252 ms 16452 KB Output is correct
74 Correct 206 ms 19236 KB Output is correct
75 Correct 203 ms 21272 KB Output is correct
76 Correct 207 ms 20968 KB Output is correct
77 Correct 185 ms 16268 KB Output is correct
78 Correct 236 ms 15056 KB Output is correct
79 Correct 567 ms 20712 KB Output is correct
80 Correct 602 ms 19876 KB Output is correct
81 Correct 364 ms 39076 KB Output is correct
82 Correct 406 ms 44480 KB Output is correct
83 Correct 1030 ms 126768 KB Output is correct
84 Correct 556 ms 107972 KB Output is correct
85 Correct 956 ms 123080 KB Output is correct
86 Correct 670 ms 103352 KB Output is correct
87 Correct 330 ms 73640 KB Output is correct
88 Correct 467 ms 83132 KB Output is correct
89 Correct 858 ms 118332 KB Output is correct
90 Correct 979 ms 115848 KB Output is correct
91 Correct 809 ms 123104 KB Output is correct