Submission #557161

# Submission time Handle Problem Language Result Execution time Memory
557161 2022-05-04T19:45:35 Z nutella Land of the Rainbow Gold (APIO17_rainbow) C++17
12 / 100
413 ms 88928 KB
#include "rainbow.h"

//#define _GLIBCXX_DEBUG

//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

#include <bits/stdc++.h>

using namespace std;

//#include <ext/pb_ds/assoc_container.hpp>
//
//using namespace __gnu_pbds;
//
//template<typename T>
//using ordered_set = tree<T, null_type, less < T>, rb_tree_tag, tree_order_statistics_node_update>;

template<typename T>
using normal_queue = priority_queue<T, vector<T>, greater<>>;

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

#define trace(x) cout << #x << ": " << (x) << endl;
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define uniq(x) x.resize(unique(all(x)) - begin(x))
#define sz(s) ((int) size(s))
#define pii pair<int, int>
#define mp(x, y) make_pair(x, y)
#define int128 __int128
#define pb push_back
#define popb pop_back
#define eb emplace_back
#define fi first
#define se second
#define itn int

typedef long long ll;
typedef pair<ll, ll> pll;
typedef long double ld;
typedef double db;
typedef unsigned int uint;


template<typename T>
bool ckmn(T &x, T y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}

template<typename T>
bool ckmx(T &x, T y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}

int bit(int x, int b) {
    return (x >> b) & 1;
}

int rand(int l, int r) { return (int) ((ll) rnd() % (r - l + 1)) + l; }


const ll infL = 3e18;
const int infI = 1000000000 + 7;
const int infM = 0x3f3f3f3f; //a little bigger than 1e9
const ll infML = 0x3f3f3f3f3f3f3f3fLL; //4.5e18

template<typename T>
void make_uniq(vector<T> &v) {
    sort(all(v));
    v.resize(unique(all(v)) - begin(v));
}

struct Fenwick {
    vector<vector<ll>> t;
    vector<vector<int>> yy;
    int n;


    Fenwick() = default;

    void init(int a) {
        n = a;
        yy.resize(n);
        t.resize(n);
    }

    void fake_add(int x, int y) {
        for (int i = x; i < n; i |= (i + 1))
            yy[i].pb(y);
    }

    void build() {
        for (int i = 0; i < n; ++i) {
            make_uniq(yy[i]);
            t[i].resize(sz(yy[i]) + 2);
        }
    }

    void add(int x, int y) {
        for (int i = x; i < n; i |= (i + 1))
            for (int j = lower_bound(all(yy[i]), y) - begin(yy[i]); j < sz(yy[i]); j |= (j + 1))
                ++t[i][j];
    }

    ll get(int x, int y) {
        ll ans = 0;
        for (int i = x; i > -1; i = ((i + 1) & i) - 1)
            for (int j = upper_bound(all(yy[i]), y) - begin(yy[i]) - 1; j > -1; j = ((j + 1) & j) - 1)
                ans += t[i][j];
        return ans;
    }

    ll get(int x1, int y1, int x2, int y2) {
        return get(x2, y2) - get(x1 - 1, y2) - get(x2, y1 - 1) + get(x1 - 1, y1 - 1);
    }

};

const int dx[2] = {0, 1};

const int dy[2] = {1, 0};
int n, m;
vector<pair<int, int>> yy;

Fenwick fx, fy, fv, cv;
int mnx = infI, mny = infI, mxx = -infI, mxy = -infI;

auto here = [](int x, int y) -> bool {
    auto it = lower_bound(all(yy), mp(x, y));
    if (it == end(yy)) return false;
    return (*it) == mp(x, y);
};

void init(int R, int C, int sr, int sc, int M, char *S) {
    n = R, m = C;
    --sr, --sc;
    fx.init(n), fy.init(n), fv.init(n), cv.init(n);
    yy = {{sr, sc}};
    for (int i = 0; i < M; ++i) {
        if (S[i] == 'N') --sr;
        else if (S[i] == 'S') ++sr;
        else if (S[i] == 'W') --sc;
        else ++sc;
        yy.emplace_back(sr, sc);
    }
    make_uniq(yy);

    vector<pii > pv, px, py, cvv;
    for (auto [x, y]: yy) { ;
        pv.emplace_back(x, y);
        ckmx(mxx, x);
        ckmx(mxy, y);
        ckmn(mnx, x);
        ckmn(mny, y);
        for (int i = 0; i < 2; ++i) {
            int nx = x + dx[i], ny = y + dy[i];
            if (here(nx, ny)) {
                if (nx == x) {
                    px.emplace_back(x, y);
                } else {
                    py.emplace_back(x, y);
                }
            }
        }
        if (here(x + 1, y) && here(x, y + 1) && here(x + 1, y + 1)) {
            cvv.emplace_back(x, y);
        }
    }

    make_uniq(pv), make_uniq(px), make_uniq(py), make_uniq(cvv);

    for (auto [x, y]: pv)
        fv.fake_add(x, y);
    for (auto [x, y]: px)
        fx.fake_add(x, y);
    for (auto [x, y]: py)
        fy.fake_add(x, y);
    for (auto [x, y]: cvv)
        cv.fake_add(x, y);

    fv.build(), fx.build(), fy.build(), cv.build();

    for (auto [x, y]: pv)
        fv.add(x, y);
    for (auto [x, y]: px)
        fx.add(x, y);
    for (auto [x, y]: py)
        fy.add(x, y);
    for (auto [x, y]: cvv)
        cv.add(x, y);


}

int colour(int ar, int ac, int br, int bc) {
    int x1 = ar, y1 = ac, x2 = br, y2 = bc;
    --x1, --y1;
    --x2, --y2;
    ll C = 1 + bool(x1 < mnx && mxx < x2 && y1 < mny && mxy < y2);
    ll E = (x2 - x1 + 2) * 2 + (y2 - y1 + 2) * 2;
    E += fx.get(x1, y1, x2, y2 - 1) + fy.get(x1, y1, x2 - 1, y2);
    E += fv.get(x1, y2, x2, y2);
    E += fv.get(x1, y1, x2, y1);
    E += fv.get(x1, y1, x1, y2);
    E += fv.get(x2, y1, x2, y2);
    ll V = (x2 - x1 + 2) * 2LL + (y2 - y1 + 2) * 2LL + fv.get(x1, y1, x2, y2);
    ll cnt_squares = fx.get(x1, y1, x1, y2 - 1) + fx.get(x2, y1, x2, y2 - 1) + fy.get(x1, y1, x2 - 1, y1) +
                      fy.get(x1, y2, x2 - 1, y2);
    // .-.
    // | | <---- counted this F extra time
    // O-O
    ll cnt_on_corners = here(x1, y1) + here(x1, y2) + here(x2, y2) + here(x2, y1);
    // .-.
    // | |  <--- nums of Os, so we counted this F extra 1 time
    // .-O
    ll U = cv.get(x1, y1, x2 - 1, y2 - 1) + cnt_on_corners + cnt_squares;
    ll F = C + 1 + E - V;
    ll ans = F - U - 1;
    assert(ans >= 0);
    return (int)ans;
}
# Verdict Execution time Memory Grader output
1 Incorrect 4 ms 212 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 271 ms 4104 KB Output is correct
4 Correct 368 ms 6788 KB Output is correct
5 Correct 413 ms 6644 KB Output is correct
6 Correct 307 ms 7308 KB Output is correct
7 Correct 351 ms 6000 KB Output is correct
8 Correct 72 ms 1940 KB Output is correct
9 Correct 406 ms 6792 KB Output is correct
10 Correct 351 ms 6720 KB Output is correct
11 Correct 411 ms 7484 KB Output is correct
12 Correct 146 ms 5920 KB Output is correct
13 Correct 165 ms 6852 KB Output is correct
14 Correct 160 ms 6696 KB Output is correct
15 Correct 164 ms 7396 KB Output is correct
16 Correct 285 ms 5408 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 193 ms 84780 KB Output is correct
3 Correct 166 ms 77452 KB Output is correct
4 Correct 293 ms 88928 KB Output is correct
5 Correct 157 ms 76372 KB Output is correct
6 Correct 148 ms 69556 KB Output is correct
7 Incorrect 252 ms 73376 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 4 ms 212 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 4 ms 212 KB Output isn't correct
2 Halted 0 ms 0 KB -