Submission #557075

# Submission time Handle Problem Language Result Execution time Memory
557075 2022-05-04T17:12:00 Z nutella Land of the Rainbow Gold (APIO17_rainbow) C++17
12 / 100
275 ms 89528 KB
#include "rainbow.h"

//#define _GLIBCXX_DEBUG

//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")

#include <bits/stdc++.h>

using namespace std;

//#include <ext/pb_ds/assoc_container.hpp>
//
//using namespace __gnu_pbds;
//
//template<typename T>
//using ordered_set = tree<T, null_type, less < T>, rb_tree_tag, tree_order_statistics_node_update>;

template<typename T>
using normal_queue = priority_queue<T, vector<T>, greater<>>;

mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());

#define trace(x) cout << #x << ": " << (x) << endl;
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define uniq(x) x.resize(unique(all(x)) - begin(x))
#define sz(s) ((int) size(s))
#define pii pair<int, int>
#define mp(x, y) make_pair(x, y)
#define int128 __int128
#define pb push_back
#define popb pop_back
#define eb emplace_back
#define fi first
#define se second
#define itn int

typedef long long ll;
typedef pair<ll, ll> pll;
typedef long double ld;
typedef double db;
typedef unsigned int uint;


template<typename T>
bool ckmn(T &x, T y) {
    if (x > y) {
        x = y;
        return true;
    }
    return false;
}

template<typename T>
bool ckmx(T &x, T y) {
    if (x < y) {
        x = y;
        return true;
    }
    return false;
}

int bit(int x, int b) {
    return (x >> b) & 1;
}

int rand(int l, int r) { return (int) ((ll) rnd() % (r - l + 1)) + l; }


const ll infL = 3e18;
const int infI = 1000000000 + 7;
const int infM = 0x3f3f3f3f; //a little bigger than 1e9
const ll infML = 0x3f3f3f3f3f3f3f3fLL; //4.5e18

template<typename T>
void make_uniq(vector<T> &v) {
    sort(all(v));
    v.resize(unique(all(v)) - begin(v));
}

struct Fenwick {
    vector<vector<ll>> t;
    vector<vector<int>> yy;
    int n;


    Fenwick() = default;

    void init(int a) {
        n = a;
        yy.resize(n);
        t.resize(n);
    }

    void fake_add(int x, int y) {
        for (int i = x; i < n; i |= (i + 1))
            yy[i].pb(y);
    }

    void build() {
        for (int i = 0; i < n; ++i) {
            make_uniq(yy[i]);
            t[i].resize(sz(yy[i]) + 2);
        }
    }

    void add(int x, int y) {
        for (int i = x; i < n; i |= (i + 1))
            for (int j = upper_bound(all(yy[i]), y) - begin(yy[i]) - 1; j < sz(yy[i]); j |= (j + 1))
                ++t[i][j];
    }

    ll get(int x, int y) {
        ll ans = 0;
        for (int i = x; i > -1; i = ((i + 1) & i) - 1)
            for (int j = upper_bound(all(yy[i]), y) - begin(yy[i]) - 1; j > -1; j = ((j + 1) & j) - 1)
                ans += t[i][j];
        return ans;
    }

    ll get(int x1, int y1, int x2, int y2) {
        return get(x2, y2) - get(x1 - 1, y2) - get(x2, y1 - 1) + get(x1 - 1, y1 - 1);
    }

};
const int dx[4] = {0, 0, 1, -1};

const int dy[4] = {1, -1, 0, 0};
int n, m;
vector<pair<int, int>> yy;

Fenwick fx, fy, fv, cv;
int mnx = infI, mny = infI, mxx = -infI, mxy = -infI;

void init(int R, int C, int sr, int sc, int M, char *S) {
    n = R, m = C;
    --sr, --sc;
    fx.init(n), fy.init(n), fv.init(n), cv.init(n);
    yy = {{sr, sc}};
    for (int i = 0; i < M; ++i) {
        if (S[i] == 'N') --sr;
        else if (S[i] == 'S') ++sr;
        else if (S[i] == 'W') --sc;
        else ++sc;
        yy.emplace_back(sr, sc);
    }
    make_uniq(yy);

    auto here = [](int x, int y) -> bool {
        auto it = lower_bound(all(yy), mp(x, y));
        if (it == end(yy)) return false;
        return (*it) == mp(x, y);
    };
    vector<pii > pv, px, py, cvv;
    for (auto [x, y]: yy) {;
        pv.emplace_back(x, y);
        ckmx(mxx, x);
        ckmx(mxy, y);
        ckmn(mnx, x);
        ckmn(mny, y);
        for (int i = 0; i < 4; ++i) {
            int nx = x + dx[i], ny = y + dy[i];
            if (here(nx, ny)) {
                if (nx == x) {
                    px.emplace_back(x, min(ny, y));
                } else {
                    py.emplace_back(min(nx, x), y);
                }
            }
        }
        if (here(x + 1, y) && here(x, y + 1) && here(x + 1, y + 1)) {
            cvv.emplace_back(x, y);
        }
    }

    make_uniq(pv), make_uniq(px), make_uniq(py), make_uniq(cvv);

    for (auto [x, y] : pv)
        fv.fake_add(x, y);
    for (auto [x, y] : px)
        fx.fake_add(x, y);
    for (auto [x, y] : py)
        fy.fake_add(x, y);
    for (auto [x, y] : cvv)
        cv.fake_add(x, y);

    fv.build(), fx.build(), fy.build(), cv.build();

    for (auto [x, y] : pv)
        fv.add(x, y);
    for (auto [x, y] : px)
        fx.add(x, y);
    for (auto [x, y] : py)
        fy.add(x, y);
    for (auto [x, y] : cvv)
        cv.add(x, y);


}

int colour(int ar, int ac, int br, int bc) {
    int x1 = ar, y1 = ac, x2 = br, y2 = bc;
    --x1, --y1;
    --x2, --y2;
    int C = 1 + bool(x1 < mnx && mxx < x2 && y1 < mny && mxy < y2);
    ll E = (x2 - x1) * 2 + (y2 - y1) * 2 + fx.get(x1 + 1, y1, x2 - 1, y2 - 1) + fy.get(x1, y1 + 1, x2 - 1, y2 - 1);
    ll V = (x2 - x1 + 1) * 2 + (y2 - y1 - 1) * 2 + fv.get(x1 + 1, y1 + 1, x2 - 1, y2 - 1);
    ll U = cv.get(x1, y1, x2 - 1, y2 - 1);
    ll F = C + 1 + E - V;
    int ans = F - U - 1;
    return ans;
}
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 328 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 130 ms 4268 KB Output is correct
4 Correct 212 ms 7340 KB Output is correct
5 Correct 220 ms 7476 KB Output is correct
6 Correct 200 ms 8108 KB Output is correct
7 Correct 198 ms 6288 KB Output is correct
8 Correct 64 ms 1984 KB Output is correct
9 Correct 201 ms 7384 KB Output is correct
10 Correct 212 ms 7484 KB Output is correct
11 Correct 219 ms 8092 KB Output is correct
12 Correct 123 ms 6648 KB Output is correct
13 Correct 128 ms 7224 KB Output is correct
14 Correct 133 ms 7452 KB Output is correct
15 Correct 145 ms 8128 KB Output is correct
16 Correct 148 ms 5996 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 208 ms 85548 KB Output is correct
3 Correct 173 ms 78004 KB Output is correct
4 Correct 275 ms 89528 KB Output is correct
5 Correct 158 ms 77064 KB Output is correct
6 Correct 146 ms 70076 KB Output is correct
7 Incorrect 213 ms 74248 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 328 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 328 KB Output isn't correct
2 Halted 0 ms 0 KB -