# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
557037 | nutella | Land of the Rainbow Gold (APIO17_rainbow) | C++17 | 0 ms | 0 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include "rainbow.h"
//#define _GLIBCXX_DEBUG
//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include <bits/stdc++.h>
using namespace std;
//#include <ext/pb_ds/assoc_container.hpp>
//
//using namespace __gnu_pbds;
//
//template<typename T>
//using ordered_set = tree<T, null_type, less < T>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename T>
using normal_queue = priority_queue<T, vector<T>, greater<>>;
mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
#define trace(x) cout << #x << ": " << (x) << endl;
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define uniq(x) x.resize(unique(all(x)) - begin(x))
#define sz(s) ((int) size(s))
#define pii pair<int, int>
#define mp(x, y) make_pair(x, y)
#define int128 __int128
#define pb push_back
#define popb pop_back
#define eb emplace_back
#define fi first
#define se second
#define itn int
typedef long long ll;
typedef pair<ll, ll> pll;
typedef long double ld;
typedef double db;
typedef unsigned int uint;
template<typename T>
bool ckmn(T &x, T y) {
if (x > y) {
x = y;
return true;
}
return false;
}
template<typename T>
bool ckmx(T &x, T y) {
if (x < y) {
x = y;
return true;
}
return false;
}
int bit(int x, int b) {
return (x >> b) & 1;
}
int rand(int l, int r) { return (int) ((ll) rnd() % (r - l + 1)) + l; }
const ll infL = 3e18;
const int infI = 1000000000 + 7;
const int infM = 0x3f3f3f3f; //a little bigger than 1e9
const ll infML = 0x3f3f3f3f3f3f3f3fLL; //4.5e18
struct Fenwick {
unordered_map<int, unordered_map<int, ll>> t;
int n, m;
set<pii> stt;
Fenwick(int a, int b) {
n = a, m = b;
}
Fenwick() = default;
void build(int a, int b) {
n = a, m = b;
}
void add(int x, int y, int val) {
if (stt.count(mp(x, y))) return;
stt.insert(mp(x, y));
for (int i = x; i < n; i |= (i + 1))
for (int j = y; j < m; j |= (j + 1))
t[i][j] += val;
}
ll get(int x, int y) {
ll ans = 0;
for (int i = x; i > -1; i = ((i + 1) & i) - 1)
for (int j = y; j > -1; j = ((j + 1) & j) - 1)
ans += t[i][j];
return ans;
}
ll get(int x1, int y1, int x2, int y2) {
return get(x2, y2) - get(x1 - 1, y2) - get(x2, y1 - 1) + get(x1 - 1, y1 - 1);
}
};
const int dx[4] = {0, 0, 1, -1};
const int dy[4] = {1, -1, 0, 0};
int n, m;
vector<pair<int, int>>
river,
yy;
int mnx = infI, mny = infI, mxx = -infI, mxy = -infI;
Fenwick fx, fy, fv, cv, cx, cy;
void init(int R, int C, int sr, int sc, int M, char *S) {
n = R + 1, m = C + 1;
--sr, --sc;
fx.build(n, m), fy.build(n, m), fv.build(n, m), cv.build(n, m), cx.build(n, m), cy.build(n, m);
river = {{sr, sc}};
set<pii > used;
used.insert(mp(sr, sc));
for (int i = 0; i < M; ++i) {
int px = sr, py = sc;
if (S[i] == 'N') --sr;
else if (S[i] == 'S') ++sr;
else if (S[i] == 'W') --sc;
else ++sc;
int x = sr, y = sc;
assert(sr >= 0 && sr < R && sc >= 0 && sc < C);
river.emplace_back(sr, sc);
if (!used.count(mp(x, y))) {
used.insert(mp(x, y));
if (x == px) {
cx.add(x, min(py, y), 1);
} else {
assert(y == py);
cy.add(min(x, px), y, 1);
}
}
}
yy = river;
sort(all(yy));
yy.resize(unique(all(yy)) - begin(yy));
auto here = [](int x, int y) -> bool {
auto it = lower_bound(all(yy), mp(x, y));
if (it == end(yy)) return false;
return (*it) == mp(x, y);
};
vector<pair<int, int>>
pp;
for (auto [x, y]: yy) {
cv.add(x, y, 1);
ckmx(mxx, x);
ckmn(mnx, x);
ckmx(mxy, y);
ckmn(mny, y);
for (int i = 0; i < 4; ++i) {
int nx = x + dx[i], ny = y + dy[i];
if (nx >= 0 && ny >= 0 && nx < n && ny < m!here(nx, ny)) {
if (nx == x) {
fy.add(x, max(ny, y), 1);
pp.emplace_back(x, max(ny, y));
pp.emplace_back(x + 1, max(ny, y));
} else {
fx.add(max(x, nx), y, 1);
pp.emplace_back(max(x, nx), y);
pp.emplace_back(max(x, nx), y + 1);
}
}
}
}
sort(all(pp));
pp.resize(unique(all(pp)) - begin(pp));
for (auto [x, y]: pp) {
fv.add(x, y, 1);
}
}
// ans = F - F(river);
// F(river) = C(river) = V(river) - E(river)
// F = C + 1 + E - V
// C is 2 if river is completely inside our rectangle, otherwise C = 1
int colour(int ar, int ac, int br, int bc) {
int x1 = ar, y1 = ac, x2 = br, y2 = bc;
--x1, --y1;
ll rv = cv.get(x1, y1, x2 - 1, y2 - 1);
ll re = cx.get(x1, y1, x2 - 1, y2 - 2) + cy.get(x1, y1, x2 - 2, y2 - 1);
ll rf = rv - re;
assert(rf >= 0);
bool inside = (rf == 0 ? 0 : x1 + 1 <= mnx && y1 + 1 <= mny && mxx <= x2 - 2 && mxy <= y2 - 2 ? 1 : 0);
int C = 1;
if (inside)
C = 2;
ll E = (x2 - x1) * 2 + (y2 - y1) * 2 + fx.get(x1 + 1, y1, x2 - 1, y2 - 1) + fy.get(x1, y1 + 1, x2 - 1, y2 - 1);
ll V = (x2 - x1 + 1) * 2 + (y2 - y1 - 1) * 2 + fv.get(x1 + 1, y1 + 1, x2 - 1, y2 - 1);
ll F = C + 1 + E - V;
return (int) (F - rf - 1);
}