Submission #554490

# Submission time Handle Problem Language Result Execution time Memory
554490 2022-04-28T13:43:26 Z amunduzbaev Reconstruction Project (JOI22_reconstruction) C++17
3 / 100
5000 ms 14984 KB
#include "bits/stdc++.h"
using namespace std;
 
#define ar array
#define int long long
const int N = 1e5 + 5;
const int M = 1e9 + 5;
const int MAXN = 505;
 
struct ST{
	long long tree[N * 60];
	int ch[N * 60][2], last;
	ST(){
		last = 0;
	}
	
	int bala(int x, int t){
		if(!ch[x][t]){
			ch[x][t] = ++last;
		}
		return ch[x][t];
	}
	
	void add(int l, int r, int v, int lx = 0, int rx = M, int x = 0){
		if(lx > r || rx < l) return;
		if(lx >= l && rx <= r){
			tree[x] += v;
			return;
		} int m = (lx + rx) >> 1;
		add(l, r, v, lx, m, bala(x, 0));
		add(l, r, v, m+1, rx, bala(x, 1));
	}
	
	long long get(int i, int lx = 0, int rx = M, int x = 0){
		if(lx == rx) return tree[x];
		int m = (lx + rx) >> 1;
		if(i <= m && ch[x][0]) return tree[x] + get(i, lx, m, ch[x][0]);
		if(m < i && ch[x][1]) return tree[x] + get(i, m+1, rx, ch[x][1]);
		return tree[x];
	}
};

// ST tree, cnt;
 
int a[N], b[N], w[N];
vector<int> edges[MAXN];
 
signed main(){
	ios::sync_with_stdio(0); cin.tie(0);
	
	int n, m; cin>>n>>m;
	vector<int> p(m);
	for(int i=0;i<m;i++){ p[i] = i;
		cin>>a[i]>>b[i]>>w[i];
	}
	
	vector<ar<int, 2>> tot, cnt;
	
	for(int i=0;i<m;i++){
		auto check = [&](int x){
			vector<int> p(m); 
			iota(p.begin(), p.end(), 0);
			sort(p.begin(), p.end(), [&](int i, int j){
				return abs(w[i] - x) < abs(w[j] - x);
			});
			
			vector<int> par(n + 1), sz(n + 1, 1);
			iota(par.begin(), par.end(), 0);
			function<int(int)> f = [&](int x){
				return (par[x] == x ? x : par[x] = f(par[x]));
			};
			auto merge = [&](int a, int b){
				a = f(a), b = f(b);
				if(a == b) return false;
				if(sz[a] < sz[b]) swap(a, b);
				sz[a] += sz[b], par[b] = a;
				return true;
			};
			
			int res = 0;
			for(auto in : p){
				if(merge(a[in], b[in]) && in == i) return true;
			} return false;
		};
		
		int l = w[i] - 1, r = M;
		while(l < r){
			int m = (l + r + 1) >> 1;
			if(check(m)) l = m;
			else r = m - 1;
		}
		
		if(w[i] <= r){
			tot.push_back({w[i], -w[i]});
			tot.push_back({r+1, w[i]});
			cnt.push_back({w[i], 1});
			cnt.push_back({r+1, -1});
			/* tree.add(w[i], r, -w[i]);
			cnt.add(w[i], r, 1); */
		}
		
		l = 0, r = w[i] + 1;
		while(l < r){
			int m = (l + r) >> 1;
			if(check(m)) r = m;
			else l = m + 1;	
		}
		
		if(l <= w[i]){
			tot.push_back({l, w[i]});
			tot.push_back({w[i]+1, -w[i]});
			cnt.push_back({l, -1});
			cnt.push_back({w[i]+1, 1});
			/* tree.add(l, w[i], w[i]);
			cnt.add(l, w[i], -1); */
		}
		
		// cout<<L<<" "<<R<<"\n";
	}
	
	/*
	sort(p.begin(), p.end(), [&](int i, int j){
		return (w[i] > w[j]);
	});
	
	vector<int> P;
	for(int l=0;l<(int)p.size();l++){
		int i = p[l];
		vector<int> par(n + 1), sz(n + 1, 1);
		iota(par.begin(), par.end(), 0);
		int in = -1, R = M;
		
		function<int(int)> f = [&](int x) { return (par[x] == x ? x : par[x] = f(par[x])); };
		auto merge = [&](int a, int b){
			a = f(a), b = f(b);
			if(a == b) return;
			if(sz[a] < sz[b]) swap(a, b);
			sz[a] += sz[b], par[b] = a;
		};
		
		for(auto x : P){
			merge(a[x], b[x]);
			if(f(a[i]) == f(b[i])){
				in = x;
				break;
			}
		}
		
		if(in == -1){
			R = M;
		} else {
		    R = (w[i] + w[in]) / 2;
			if((w[in]&1) == (w[i]&1) && in < i) R--;
		}
		
		if(w[i] <= R){
			tree.add(w[i], R, -w[i]);
			cnt.add(w[i], R, 1);
		}
		
		P.push_back(i);
		sort(P.begin(), P.end(), [&](int i, int j){
			if(w[i] != w[j]) return w[i] < w[j];
			else return i < j;
		});
	}
	
	sort(p.begin(), p.end(), [&](int i, int j){
		return (w[i] < w[j]);
	});
	P.clear();
	for(int l=0;l<(int)p.size();l++){
		int j = l - 1, i = p[l];
		vector<int> par(n + 1), sz(n + 1, 1);
		iota(par.begin(), par.end(), 0);
		int in = -1, L = 0;
		
		function<int(int)> f = [&](int x) { return (par[x] == x ? x : par[x] = f(par[x])); };
		auto merge = [&](int a, int b){
			a = f(a), b = f(b);
			if(a == b) return;
			if(sz[a] < sz[b]) swap(a, b);
			sz[a] += sz[b], par[b] = a;
		};
		
		for(auto x : P){
			merge(a[x], b[x]);
			if(f(a[i]) == f(b[i])){
				in = x;
				break;
			}
		}
		
		if(in == -1){
			L = 0;
		} else {
		    L = (w[i] + w[in] + 1) / 2;
			if((w[in]&1) == (w[i]&1) && in < i) L++;
		}
		
		if(L <= w[i]){
			tree.add(L, w[i], w[i]);
			cnt.add(L, w[i], -1);
		}
		
		P.push_back(i);
		sort(P.begin(), P.end(), [&](int i, int j){
			if(w[i] != w[j]) return w[i] > w[j];
			else return i < j;
		});
	}
	*/
	/*
	
	auto er = [&](vector<int>& a, int v){
		auto it = lower_bound(a.begin(), a.end(), v);
		a.erase(it);
	};
	
	w[m] = -1;
	for(auto i : p){
		int in = -1, R = w[i];
        function<void(int, int, int)> dfs = [&](int u, int ed, int p){
	        if(u == b[i]){
        		in = ed;
        		return;
        	}
        	
        	for(auto j : edges[u]){
        		int x = a[j] ^ b[j] ^ u;
        		if(x == p) continue;
        		int tmp = ed;
        		if(w[j] > w[ed]) tmp = j;
        		else if(w[j] == w[ed] && j > ed) tmp = j;
        		dfs(x, tmp, u);
        		if(~in) return;
        	}
	    };
	    
		dfs(a[i], m, a[i]);
		if(in == -1){
			R = M;
		} else {
		    R = (w[i] + w[in]) / 2;
			if((w[in]&1) == (w[i]&1) && in < i) R--;
			if(w[in] != w[i]){
				er(edges[a[in]], in);
				er(edges[b[in]], in);
			}
		}
		
		if(w[i] <= R){
			tree.add(w[i], R, -w[i]);
			cnt.add(w[i], R, 1);
		}
		if(w[in] != w[i]){
			edges[a[i]].push_back(i);
			sort(edges[a[i]].begin(), edges[a[i]].end());
			edges[b[i]].push_back(i);
			sort(edges[b[i]].begin(), edges[b[i]].end());
		}
	}
	
	sort(p.begin(), p.end(), [&](int i, int j){
		return (w[i] < w[j]);
	});
	
	for(int i=1;i<=n;i++) edges[i].clear();
	w[m] = M;
	for(auto i : p){
		int in = -1, L = w[i];
        function<void(int, int, int)> dfs = [&](int u, int ed, int p){
	        if(u == b[i]){
        		in = ed;
        		return;
        	}
        	
        	for(auto j : edges[u]){
        		int x = a[j] ^ b[j] ^ u;
        		if(x == p) continue;
        		int tmp = ed;
        		if(w[j] < w[ed]) tmp = j;
        		else if(w[j] == w[ed] && j > ed) tmp = j;
        		dfs(x, tmp, u);
        		if(~in) return;
        	}
	    };
	    
		dfs(a[i], m, a[i]);
		assert(in != m);
		if(in == -1){
			L = 0;
		} else {
		    L = (w[i] + w[in] + 1) / 2;
			if((w[in]&1) == (w[i]&1) && in < i) L++;
			if(w[in] != w[i]){
				er(edges[a[in]], in);
				er(edges[b[in]], in);
			}
		}
		
		if(L <= w[i]){
			tree.add(L, w[i], w[i]);
			cnt.add(L, w[i], -1);
		}
		if(w[in] != w[i]){
			edges[a[i]].push_back(i);
			sort(edges[a[i]].begin(), edges[a[i]].end());
			edges[b[i]].push_back(i);
			sort(edges[b[i]].begin(), edges[b[i]].end());
		}
	}
	*/
	
	sort(tot.begin(), tot.end());
	sort(cnt.begin(), cnt.end());
	for(int i=1;i<(int)tot.size();i++){
		tot[i][1] += tot[i-1][1];
		cnt[i][1] += cnt[i-1][1];
	}
	
	const int inf = 1e18;
	
	int q; cin>>q;
	while(q--){
	    int x; cin>>x;
	    long long res = 0;
		{
		    auto it = upper_bound(tot.begin(), tot.end(), (ar<int, 2>){x + 1, -inf});
		    if(it != tot.begin()){ it--;
			    res += (*it)[1];
			}
		}
		
		{
		    auto it = upper_bound(cnt.begin(), cnt.end(), (ar<int, 2>){x + 1, -inf});
		    if(it != cnt.begin()){ it--;
			    res += (*it)[1] * x;
			}
		}
		cout<<res<<"\n";
	    // cout<<tree.get(x) + cnt.get(x) * x<<"\n";
	}
}
 
/*
 
2 4 15
1 3 13
1 5 11
1 2 8
2 3 7
3 4 6
3 5 6
1 4 5
1 5 3
4 5 2
 
5 10
1 2 8
1 3 13
1 4 5
1 5 11
1 5 3
2 3 7
2 4 15
3 4 6
3 5 6
4 5 2
2
6
3

*/

Compilation message

reconstruction.cpp: In lambda function:
reconstruction.cpp:80:8: warning: unused variable 'res' [-Wunused-variable]
   80 |    int res = 0;
      |        ^~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 292 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 292 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 292 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 292 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Execution timed out 5044 ms 5492 KB Time limit exceeded
21 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Execution timed out 5038 ms 5848 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 292 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 292 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 3781 ms 14840 KB Output is correct
21 Correct 3813 ms 14920 KB Output is correct
22 Correct 3681 ms 14756 KB Output is correct
23 Correct 3690 ms 14904 KB Output is correct
24 Correct 3642 ms 14984 KB Output is correct
25 Correct 3644 ms 14792 KB Output is correct
26 Incorrect 3774 ms 14928 KB Output isn't correct
27 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 292 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 292 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Execution timed out 5044 ms 5492 KB Time limit exceeded
21 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 292 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 2 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 292 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 336 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Execution timed out 5044 ms 5492 KB Time limit exceeded
21 Halted 0 ms 0 KB -