Submission #553685

# Submission time Handle Problem Language Result Execution time Memory
553685 2022-04-26T15:31:44 Z Stickfish Chess Rush (CEOI20_chessrush) C++17
73 / 100
187 ms 49012 KB
#include <iostream>
#include "arithmetics.h"
#include <vector>
#include <cassert>
using namespace std;
using ll = long long;

pair<int, int> pawn(int r, int c, int j0, int j1) {
    if (j0 == j1)
        return {r - 1, 1};
    else
        return {0, 0};
}

pair<int, int> rook(int r, int c, int j0, int j1) {
    if (j0 == j1)
        return {1, 1};
    else
        return {2, 2};
}

struct point {
    ll x, y;

    point(){}

    point(ll x_, ll y_): x(x_), y(y_) {}

    point operator/(ll t) const {
        return {x / t, y / t};
    }

    point operator*(ll t) const {
        return {x * t, y * t};
    }

    bool operator==(point pt) const {
        return x == pt.x && y == pt.y;
    }

    bool operator!=(point pt) const {
        return x != pt.x || y != pt.y;
    }

    ll operator*(point pt) const {
        return x * pt.y - y * pt.x;
    }

    ll operator^(point pt) const {
        return x * pt.x + y * pt.y;
    }

    point operator+(point pt) const {
        return {x + pt.x, y + pt.y};
    }

    point operator-(point pt) const {
        return {x - pt.x, y - pt.y};
    }

    point rotate_45_normal() {
        point ans(x - y, x + y);
        if (abs(x + y) == 2 || abs(x - y) == 2)
            return ans / 2;
        else
            return ans;
    }

    point rotate_90() {
        return {-y, x};
    }

};

pair<int, int> queen(int r, int c, int j0, int j1) {
    for (point dir(1, 0); dir != point(-1, 0); dir = dir.rotate_45_normal()) {
        //cout << "! " << dir.x << ' ' << dir.y << endl;
        if (dir * point(j1 - j0, r - 1) == 0)
            return {1, 1};
    }
    int cnt = 2;
    for (point dir(1, 1); dir != point(-1, -1); dir = dir.rotate_90()) {
        // (j0, 0) + dir * k = (j1, y0)
        ll y0 = (j1 - j0) / dir.x * dir.y;
        if (0 <= y0 && y0 < r)
            cnt += 2;
        // (j0, 0) + dir * k = (x1, r - 1)
        ll x1 = j0 + (r - 1) / dir.y * dir.x;
        if (0 <= x1 && x1 < c)
            ++cnt;
        // (x2, 0) + dir * k = (j1, r - 1)
        ll x2 = j1 - (r - 1) / dir.y * dir.x;
        if (0 <= x2 && x2 < c)
            ++cnt;
    }
    if ((j0 + j1 + r) % 2) {
        int jright = 2 * c - j1 - 1;
        if (point(jright - j0, r - 1) * point(1, 1) >= 0)
            ++cnt;
        int jleft = -j1 - 1;
        if (point(-1, 1) * point(jleft - j0, r - 1) >= 0)
            ++cnt;
    }
    return {2, cnt};
}

const int MAXC = 1524;
int choose[MAXC * 2][MAXC * 2];
int balls_borders[MAXC][MAXC];
int choose_n0;

pair<int, int> bishop_goleft(int r, int c, int j0, int j1) {
    if (j0 == c - 1 && j1 == 0 && r == c)
        return {1, 1};
    int loopcnt = max(0, r / (c - 1) / 2 - 3);
    point pt(0, j0 + loopcnt * (c - 1) * 2);
    int minmoves = 1 + loopcnt * 2;
    int rmv = 0;
    int lst = 0;
    while (true) {
        if ((point(j1, r - 1) - pt) * point(1, 1) >= 0) {
            ++minmoves;
            lst = r - 1 - pt.y;
            pt = pt + point(lst, lst);
            rmv = abs(j1 - pt.x) / 2;
            break;
        }
        minmoves += 2;
        pt = pt + point(c - 1, c - 1);
        if (point(-1, 1) * (point(j1, r - 1) - pt) >= 0) {
            lst = r - 1 - pt.y;
            pt = pt + point(-lst, lst);
            rmv = abs(j1 - pt.x) / 2;
            break;
        }
        pt = pt + point(1 - c, c - 1);
    }
    lst = c - 1 - lst;
    int cnt = 0;
    if (minmoves == 2)
        return {2, 1};
    for (int rm0 = 0; rm0 <= j0 && rm0 <= rmv; ++rm0) {
        int Cvl = 0;
        if (minmoves == 3) {
            if (lst + rm0 >= rmv)
                ++cnt;
            continue;
        }
        cnt = Add(cnt, balls_borders[minmoves - 4 - choose_n0][rmv - rm0]);
        if (lst + rm0 < rmv) {
            cnt = Sub(cnt, balls_borders[minmoves - 4 - choose_n0][rmv - rm0 - lst - 1]);
        }
    }
    //cout << "---" << ' ' << minmoves << endl;
    return {minmoves, cnt};
}

pair<int, int> bishop(int r, int c, int j0, int j1) {
    if ((r + j0 + j1) % 2 == 0)
        return {0, 0};
    pair<int, int> ansup = bishop_goleft(r, c, j0, j1);
    pair<int, int> ansdown = bishop_goleft(r, c, c - j0 - 1, c - j1 - 1);
    if (ansup.first == ansdown.first)
        return {ansup.first, Add(ansup.second, ansdown.second)};
    return min(ansup, ansdown);
}

struct matrix {
    matrix(int sz_): sz(sz_), f(sz_, vector<int>(sz_, 0)) {}

    vector<int>& operator[](int i) {
        return f[i];
    }

    matrix operator*(matrix m) {
        matrix ans(sz);
        for (int i = 0; i * 2 - 1 < sz; ++i) {
            for (int t = 0; t < sz; ++t) {
                if (f[i][t] == 0)
                    continue;
                for (int j = 0; j < sz; ++j) {
                    ans[i][j] = Add(ans[i][j], Mul(m[t][j], f[i][t]));
                }
            }
        }
        for (int i = 0; i * 2 - 1 < sz; ++i) {
            for (int j = 0; j < sz; ++j) {
                ans[sz - i - 1][sz - j - 1] = ans[i][j];
            }
        }
        return ans;
    }

    int sz;
    vector<vector<int>> f;
};

matrix square(matrix a) {
    return a * a;
}

matrix mult_single(matrix a) {
    matrix ans(a.sz);
    for (int i = 0; i < a.sz; ++i) {
        for (int j = 0; j < a.sz; ++j) {
            ans[i][j] = a[i][j];
            if (i)
                ans[i][j] = Add(ans[i][j], a[i - 1][j]);
            if (i + 1 < a.sz)
                ans[i][j] = Add(ans[i][j], a[i + 1][j]);
        }
    }
    return ans;
}

matrix pw(int sz, int m) {
    matrix ans(sz);
    for (int i = 0; i < sz; ++i)
        ans[i][i] = 1;
    for (int bt = 30; bt >= 0; --bt) {
        ans = square(ans);
        if (m & (1 << bt))
            ans = mult_single(ans);
    }
    return ans;
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    int r, c, q;
    cin >> r >> c >> q;
    matrix king_ans(c);
    if (c <= 100)
        king_ans = pw(c, r - 1);

    choose_n0 = max(0, r / (c - 1) - c - 100);
    for (int nadd = 0; nadd <= c * 2 + 1000; ++nadd) {
        int n = choose_n0 + nadd;
        choose[nadd][0] = 1;
        for (int k = 1; k <= c * 2 + 1000 && k <= n; ++k) {
            if (nadd == 0)
                choose[nadd][k] = Div(Mul(choose[nadd][k - 1], n - k + 1), k);
            else
                choose[nadd][k] = Add(choose[nadd - 1][k], choose[nadd - 1][k - 1]);
        }
    }
    for (int t = 0; t < c + 500; ++t) {
        for (int p = 0; p < c + 500; ++p) {
            balls_borders[t][p] = choose[p + t][p];
            if (p)
                balls_borders[t][p] = Add(balls_borders[t][p], balls_borders[t][p - 1]);
        }
    }
    while (q--) {
        char t;
        int j0, j1;
        cin >> t >> j0 >> j1;
        --j0, --j1;
        pair<int, int> ans;
        if (t == 'P') {
            ans = pawn(r, c, j0, j1);
        } else if (t == 'Q') {
            ans = queen(r, c, j0, j1);
        } else if (t == 'R') {
            ans = rook(r, c, j0, j1);
        } else if (t == 'K') {
            ans = {r - 1, king_ans[j0][j1]};
        } else if (t == 'B') {
            ans = bishop(r, c, j0, j1);
        }
        cout << ans.first << ' ' << ans.second << '\n';
    }
}

Compilation message

chessrush.cpp: In function 'std::pair<int, int> bishop_goleft(int, int, int, int)':
chessrush.cpp:143:13: warning: unused variable 'Cvl' [-Wunused-variable]
  143 |         int Cvl = 0;
      |             ^~~
# Verdict Execution time Memory Grader output
1 Correct 10 ms 9428 KB Output is correct
2 Incorrect 65 ms 36076 KB Output isn't correct
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 11 ms 9428 KB Output is correct
2 Correct 20 ms 11604 KB Output is correct
3 Correct 14 ms 9200 KB Output is correct
4 Correct 33 ms 19788 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 9300 KB Output is correct
2 Correct 12 ms 9492 KB Output is correct
3 Correct 10 ms 9428 KB Output is correct
4 Correct 10 ms 9556 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 10 ms 9300 KB Output is correct
2 Correct 12 ms 9492 KB Output is correct
3 Correct 10 ms 9428 KB Output is correct
4 Correct 10 ms 9556 KB Output is correct
5 Correct 79 ms 40988 KB Output is correct
6 Correct 54 ms 30160 KB Output is correct
7 Correct 25 ms 12116 KB Output is correct
8 Correct 129 ms 49012 KB Output is correct
9 Correct 13 ms 11296 KB Output is correct
10 Correct 129 ms 14060 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 9980 KB Output is correct
2 Correct 29 ms 11676 KB Output is correct
3 Correct 24 ms 11476 KB Output is correct
4 Correct 10 ms 9428 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 9980 KB Output is correct
2 Correct 29 ms 11676 KB Output is correct
3 Correct 24 ms 11476 KB Output is correct
4 Correct 10 ms 9428 KB Output is correct
5 Correct 14 ms 9940 KB Output is correct
6 Correct 14 ms 9940 KB Output is correct
7 Correct 29 ms 11372 KB Output is correct
8 Correct 31 ms 11640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 9980 KB Output is correct
2 Correct 29 ms 11676 KB Output is correct
3 Correct 24 ms 11476 KB Output is correct
4 Correct 10 ms 9428 KB Output is correct
5 Correct 14 ms 9940 KB Output is correct
6 Correct 14 ms 9940 KB Output is correct
7 Correct 29 ms 11372 KB Output is correct
8 Correct 31 ms 11640 KB Output is correct
9 Correct 20 ms 12116 KB Output is correct
10 Correct 22 ms 12100 KB Output is correct
11 Correct 173 ms 14480 KB Output is correct
12 Correct 187 ms 14476 KB Output is correct
13 Correct 22 ms 12144 KB Output is correct
14 Correct 16 ms 11220 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 12 ms 9980 KB Output is correct
2 Correct 29 ms 11676 KB Output is correct
3 Correct 24 ms 11476 KB Output is correct
4 Correct 10 ms 9428 KB Output is correct
5 Correct 14 ms 9940 KB Output is correct
6 Correct 14 ms 9940 KB Output is correct
7 Correct 29 ms 11372 KB Output is correct
8 Correct 31 ms 11640 KB Output is correct
9 Correct 20 ms 12116 KB Output is correct
10 Correct 22 ms 12100 KB Output is correct
11 Correct 173 ms 14480 KB Output is correct
12 Correct 187 ms 14476 KB Output is correct
13 Correct 22 ms 12144 KB Output is correct
14 Correct 16 ms 11220 KB Output is correct
15 Correct 23 ms 12116 KB Output is correct
16 Correct 20 ms 12128 KB Output is correct
17 Incorrect 98 ms 48944 KB Output isn't correct
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 10 ms 9428 KB Output is correct
2 Incorrect 65 ms 36076 KB Output isn't correct
3 Halted 0 ms 0 KB -