Submission #549918

#TimeUsernameProblemLanguageResultExecution timeMemory
549918NAHDISkyline (IZhO11_skyline)C++14
0 / 100
22 ms48468 KiB
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vii = vector<vi>; using vs = vector<string>; using vss = vector<vs>; using vb = vector<bool>; using vbb = vector<vb>; using ii = pair<int, int>; using vpi = vector<ii>; using vpii = vector<vpi>; using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using table = unordered_map<unsigned long, int>; using pll = pair<ll,ll>; using vpl = vector<pll>; using vpll = vector<vpl>; #define f first #define s second #define forn(i, n) for(int i = 0; i < n; i++) #define fore(i, a, b) for(int i = a; i <= b; i++) #define for1n(i, n) for(int i = 1; i <= n; i++) #define rof(i, n) for(int i = n-1; i >= 0; i--) #define rofe(i, a, b) for(int i = b; i >= a; i--) #define all(x) x.begin(), x.end() #define dsc(type) greater<type> #define Flag cout << "Reached here.\n"; #define FASTIO ios::sync_with_stdio(0); cin.tie(0); #define pb push_back #define pbb pop_back #define sz size #define rsz resize #define rsv reserve #define ins insert #define lb(a, val) lower_bound(all(a), val); #define ub(a, val) upper_bound(all(a), val); #define onec(x) __builtin_popcount(x) #define end0(x) __builtin_clz(x) #define beg0(x) __builtin_ctz(x) #define MAX 100000000 #define MIN -MAX #define mod 1000000007LL #define clr(x, y) memset(x, y, sizeof(x)) template<class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } int dx[] = {0, 1, -1, 0}; int dy[] = {1, 0, 0, -1}; #define N 302 #define H 202 /* Let dp[last][cur][i] denote the ith element with current height and last height. Obviously, we would want our cur to be h[i], and last to be h[i-1] in the final answer. now, we select the minimum of the three following options: dp[last][cur-1][i] + 3, we are doing first operation. dp[last-1][cur-1][i] + 5, we are doing second operation. we don't have the third parameter. in this case, we must look at the total number of possible third operations we can do. Let v denote that. Let's consider i-1. last-v will be our cur element, and maximum possible from i-2 will be h[i-2]-v. Thus, our candidate: dp[h[i-2]-v][last-v][i-1] + (7*v) */ int dp[H][H][N]; int h[N]; int n; #define MAXV 180002 int memo(int last, int cur, int i) { //We have only two elements to consider. if(last < 0 || cur < 0) return MAXV; if(i == 1) { int mx = max(last, cur), mn = min(last, cur); return (mn * 5) + ((mx-mn) * 3); } if(dp[last][cur][i] != -1) return dp[last][cur][i]; int v = min({last, h[i-2], cur}); return dp[last][cur][i] = min({ memo(last-1, cur-1, i) + 5, memo(last, cur-1, i) + 3, memo(h[i-2]-v, last-v, i-1) + (7*v) }); } void solve() { cin >> n; forn(i, n) cin >> h[i]; clr(dp, -1); if(n == 1) { cout << (h[0] * 3) << '\n'; return; } cout << memo(h[n-2], h[n-1], n-1) << '\n'; } int main() { FASTIO; solve(); }
#Verdict Execution timeMemoryGrader output
Fetching results...