Submission #546646

# Submission time Handle Problem Language Result Execution time Memory
546646 2022-04-07T23:16:16 Z Olympia Lampice (COCI19_lampice) C++
42 / 110
5000 ms 14400 KB
#include <cmath>
#include <iostream>
#include <set>
#include <climits>
#include <cstdio>
#include <algorithm>
#include <cassert>
#include <string>
#include <vector>
#include <iomanip>
#include <unordered_map>
#include <type_traits>
#include <string>
#include <queue>
#include <map>
#include <ext/pb_ds/assoc_container.hpp>
 
 
using namespace std;
 
const int MOD = 1e9 + 9;
const int BASE = 293;
const int inv = 706484648;
 
 
class Tree {
public:
    vector<int> sub, depth, parent;
    vector<int64_t> dp1, dp2;
    vector<bool> hasVisited;
    vector<int> adj[(int)5e4];
    vector<int64_t> powr, ipowr;
    int dp[(int)5e4][17];
    string s;
    int sz;
    int dfs1 (int curNode, int prevNode) {
        sub[curNode] = 1;
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode) sub[curNode] += dfs1(i, curNode);
        return (sz = sub[curNode]);
    }
    int get_centroid (int curNode, int prevNode) {
        for (int i: adj[curNode]) if (!hasVisited[i] && i != prevNode && sub[i] > sz/2) return get_centroid(i, curNode);
        return curNode;
    }
    int max_len; int fine = 0;
    void fill (int curNode, int prevNode, int d, int64_t val1, int64_t val2) {
        dp1[curNode] = val1 = (BASE * val1 + s[curNode]) % MOD;
        dp2[curNode] = val2 = (powr[d] * s[curNode] + val2) % MOD;
        fine += (dp1[curNode] == dp2[curNode] && d + 1 == max_len);
        dp[curNode][0] = prevNode;
        for (int i = 1; i < 17; i++) {
            dp[curNode][i] = dp[dp[curNode][i - 1]][i - 1];
        }
        depth[curNode] = d;
        parent[curNode] = prevNode;
        for (int i: adj[curNode]) {
            if (!hasVisited[i] && i != prevNode) {
                fill(i, curNode, d + 1, val1, val2);
            }
        }
    }
 
    int64_t go_up (int l, int d) {
        while (d) {
            l = dp[l][(int)log2(d & -d)];
            d -= (d & -d);
        }
        return l;
    }
 
    int centroid;
 
    __gnu_pbds::gp_hash_table<int, bool> m1;
    vector<int> to_do;
    void dfs (int curNode, int prevNode) {
        if (depth[curNode] + 1 >= max_len) {
            return;
        }
        to_do.push_back(dp1[curNode]);
        for (int i: adj[curNode]) {
            if (i != prevNode && !hasVisited[i]) {
                dfs (i, curNode);
            }
        }
        if (2 * depth[curNode] + 1 >= max_len) {
            int x = go_up(curNode, max_len - depth[curNode] - 2);
            if (dp1[parent[x]] == dp2[parent[x]]) {
                if (m1.find(((dp1[curNode] - (powr[max_len - depth[curNode] - 1] * dp1[parent[x]]) % MOD + MOD) % MOD + powr[max_len - depth[curNode] - 1] * s[centroid]) % MOD) != m1.end()) {
                    fine ++;
                    return;
                }
            }
        }
    }
 
    bool solve (int curNode) {
        dfs1(curNode, curNode);
        centroid = get_centroid(curNode, curNode);
        hasVisited[centroid] = true;
        depth[centroid] = 0;
        for (int i = 0; i < 17; i++) dp[centroid][i] = centroid;
        dp1[centroid] = s[centroid], dp2[centroid] = s[centroid];
        fine += (max_len == 1);
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                fill(i, centroid, 1, s[centroid], s[centroid]);
            }
        }
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1[j] = 1;
                to_do.clear();
            }
        }
        if (fine) return true;
        reverse(adj[centroid].begin(), adj[centroid].end());
        m1.clear();
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                dfs (i, centroid);
                for (int j: to_do) m1[j] = 1;
                to_do.clear();
            }
        }
        if (fine) return true;
        for (int i: adj[centroid]) {
            if (!hasVisited[i]) {
                if (solve(i)) {
                    return true;
                }
            }
        }
        return false;
    }
    Tree (int n) {
        sub.resize(n), hasVisited.assign(n, false); powr.push_back(1); for (int i = 0; i <= n + 5; i++) powr.push_back(powr.back() * BASE), powr.back() %= MOD;
        ipowr.push_back(1); for (int i = 0; i <= n + 5; i++) ipowr.push_back(ipowr.back() * inv), powr.back() %= MOD;
        parent.resize(n), depth.resize(n), dp1.resize(n), dp2.resize(n);
    }
};
 
int main() {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    int n; cin >> n;
    string s; cin >> s;
    Tree myTree(n);
    for (int i = 0; i < n - 1; i++) {
        int u, v;
        cin >> u >> v;
        u--, v--;
        myTree.adj[u].push_back(v), myTree.adj[v].push_back(u);
    }
    myTree.s = s;
    int myMax = 0;
    int l = 0;
    int r = s.length()/2;
    while (l != r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l); l = 0;
    r = s.length()/2;
    while (l < r) {
        int m = (l + r + 1)/2;
        myTree.max_len = 2 * m + 1; myTree.fine = 0; myTree.hasVisited.assign(n, false);
        myTree.solve(0);
        if (myTree.fine) {
            l = m;
        } else {
            r = m - 1;
        }
    }
    myMax = max(myMax, 2 * l + 1);
    cout << myMax;
}
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4820 KB Output is correct
2 Correct 15 ms 4820 KB Output is correct
3 Correct 50 ms 5052 KB Output is correct
4 Correct 53 ms 5032 KB Output is correct
5 Correct 3 ms 4820 KB Output is correct
6 Correct 2 ms 4692 KB Output is correct
7 Correct 2 ms 4692 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2730 ms 13332 KB Output is correct
2 Correct 2283 ms 13512 KB Output is correct
3 Correct 1457 ms 13648 KB Output is correct
4 Correct 1793 ms 14400 KB Output is correct
5 Correct 2721 ms 14316 KB Output is correct
6 Correct 323 ms 12652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4988 ms 12656 KB Output is correct
2 Execution timed out 5084 ms 12324 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 6 ms 4820 KB Output is correct
2 Correct 15 ms 4820 KB Output is correct
3 Correct 50 ms 5052 KB Output is correct
4 Correct 53 ms 5032 KB Output is correct
5 Correct 3 ms 4820 KB Output is correct
6 Correct 2 ms 4692 KB Output is correct
7 Correct 2 ms 4692 KB Output is correct
8 Correct 2730 ms 13332 KB Output is correct
9 Correct 2283 ms 13512 KB Output is correct
10 Correct 1457 ms 13648 KB Output is correct
11 Correct 1793 ms 14400 KB Output is correct
12 Correct 2721 ms 14316 KB Output is correct
13 Correct 323 ms 12652 KB Output is correct
14 Correct 4988 ms 12656 KB Output is correct
15 Execution timed out 5084 ms 12324 KB Time limit exceeded
16 Halted 0 ms 0 KB -