Submission #544324

# Submission time Handle Problem Language Result Execution time Memory
544324 2022-04-01T16:53:46 Z Olympia Slon (COCI15_slon) C++17
48 / 120
6 ms 596 KB
#include <vector>
#include <algorithm>
#include <iostream>
#include <set>
#include <cmath>
#include <map>
#include <random>
#include <cassert>
#include <ctime>
#include <bitset>
#include <stack>
#include <cstdlib>
#include <queue>
#include <stdint.h>
#include <vector>
#include <cassert>
#include <numeric>
#include <iostream>
#include <algorithm>
#include <functional>
#include <cstdio>
#include <limits.h>

#pragma GCC target ("avx2")
#pragma GCC optimization ("O3")
#pragma GCC optimization ("unroll-loops")

using namespace std;

int M, MOD;

struct modint {
    modint() : n(0) {}
    template <class T> modint(T n) { n %= M; if (n < 0) n += M; this->n = n; }

    modint & operator+=(const modint &r) { n += r.n; if (n >= M) n -= M; return *this; }
    modint & operator-=(const modint &r) { n -= r.n; if (n < 0) n += M; return *this; }
    modint & operator*=(const modint &r) { n = (int) ((long long) n * r.n % M); return *this; }

    modint & operator--() { if (--n == -1) n = M - 1; return *this; }
    modint & operator++() { if (++n == M) n = 0; return *this; }
    modint operator--(int) { modint t = *this; --*this; return t; }
    modint operator++(int) { modint t = *this; ++*this; return t; }

    modint operator-() const { return 0 - *this; }
    modint operator+() const { return *this; }

    modint pow(long long k = M - 2) const {
        modint f = *this, p = 1;
        while (k > 0) {
            if (k % 2 == 1) f *= p;
            p *= p, k /= 2;
        }
        return f;
    }

    int mod() const { return M; }

    friend modint operator+(modint l, const modint &r) { return l += r; }
    friend modint operator-(modint l, const modint &r) { return l -= r; }
    friend modint operator*(modint l, const modint &r) { return l *= r; }

    friend bool operator==(const modint &l, const modint &r) { return l.n == r.n; }
    friend bool operator!=(const modint &l, const modint &r) { return l.n != r.n; }

    friend ostream & operator<<(ostream &out, const modint &r) { return out << r.n; }

    int n;
};

struct Polynomial {
    modint x;
    modint a;

    Polynomial operator+(Polynomial p) const {
        return {p.x + x, p.a + a};
    }

    Polynomial operator*(Polynomial p) const {
        return {p.x * a + p.a * x, p.a * a};
    }

    Polynomial operator-(Polynomial p) const {
        return {x-p.x, a-p.a};
    }
};

int ordering(char c) {
    if (c == '+' || c == '-') return 1;
    if (c == '*') return 2;
    return 0;
}

Polynomial applyOp(Polynomial p1, Polynomial p2, char c) {
    if (c == '+') return p1 + p2;
    if (c == '*') return p1 * p2;
    if (c == '-') return p1 - p2;
    assert(false);
}

int main() {
    //freopen("balancing.in", "r", stdin);
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    string s;
    cin >> s;
    int modulo; cin >> modulo;
    cin >> MOD;
    M = MOD;
    stack<char> ops;
    stack<Polynomial> values;
    int i;

    for (i = 0; i < s.length(); i++) {
        if (s[i] == ' ')
            continue;
        else if (s[i] == '(') {
            ops.push(s[i]);
        } else if (isdigit(s[i])) {
            int64_t val = 0;
            while (i < s.length() && isdigit(s[i])) {
                val = (val * 10) + (s[i] - '0');
                val %= MOD;
                i++;
            }
            values.push({0, val});
            i--;
        } else if (s[i] == ')') {
            while (!ops.empty() && ops.top() != '(') {
                Polynomial val2 = values.top();
                values.pop();
                Polynomial val1 = values.top();
                values.pop();
                char op = ops.top();
                ops.pop();
                values.push(applyOp(val1, val2, op));
            }
            if (!ops.empty()) {
                ops.pop();
            }
        } else if (s[i] == 'x') {
            values.push({1, 0});
        } else {
            while (!ops.empty() && ordering(ops.top()) >= ordering(s[i])) {
                Polynomial val2 = values.top();
                values.pop();
                Polynomial val1 = values.top();
                values.pop();
                char op = ops.top();
                ops.pop();
                values.push(applyOp(val1, val2, op));
            }
            ops.push(s[i]);
        }
    }
    while (!ops.empty()) {
        Polynomial val2 = values.top();
        values.pop();
        Polynomial val1 = values.top();
        values.pop();
        char op = ops.top();
        ops.pop();
        values.push(applyOp(val1, val2, op));
    }
    for (modint x = 0; x != MOD - 1; x++) {
        if ((values.top().a.n + values.top().x.n * x.n) % MOD == modulo) {
            cout << x;
            exit(0);
        }
    }

}

Compilation message

slon.cpp:25: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
   25 | #pragma GCC optimization ("O3")
      | 
slon.cpp:26: warning: ignoring '#pragma GCC optimization' [-Wunknown-pragmas]
   26 | #pragma GCC optimization ("unroll-loops")
      | 
slon.cpp: In function 'int main()':
slon.cpp:114:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::__cxx11::basic_string<char>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  114 |     for (i = 0; i < s.length(); i++) {
      |                 ~~^~~~~~~~~~~~
slon.cpp:121:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::__cxx11::basic_string<char>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  121 |             while (i < s.length() && isdigit(s[i])) {
      |                    ~~^~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Incorrect 5 ms 212 KB Output isn't correct
2 Incorrect 5 ms 596 KB Output isn't correct
3 Correct 1 ms 212 KB Output is correct
4 Incorrect 3 ms 340 KB Output isn't correct
5 Incorrect 3 ms 212 KB Output isn't correct
6 Incorrect 6 ms 212 KB Output isn't correct
7 Correct 1 ms 336 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Incorrect 4 ms 468 KB Output isn't correct
10 Correct 1 ms 468 KB Output is correct