# | Time | Username | Problem | Language | Result | Execution time | Memory |
---|---|---|---|---|---|---|---|
538342 | Bungmint | Osmosmjerka (COCI17_osmosmjerka) | C++17 | 305 ms | 19296 KiB |
This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
//Copyright © 2022 Youngmin Park. All rights reserved.
//#pragma GCC optimize("O3")
//#pragma GCC target("avx2")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using pii = pair<int, int>;
using vpi = vector<pii>;
using pll = pair<ll, ll>;
using vl = vector<ll>;
using vpl = vector<pll>;
using ld = long double;
template <typename T, size_t SZ>
using ar = array<T, SZ>;
#define all(v) (v).begin(), (v).end()
#define pb push_back
#define sz(x) (int)(x).size()
#define fi first
#define se second
#define lb lower_bound
#define ub upper_bound
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define F0R(i, a) FOR(i, 0, a)
#define ROF(i, a, b) for (int i = (b)-1; i >= (a); --i)
#define R0F(i, a) ROF(i, 0, a)
#define REP(a) F0R(_, a)
const int INF = 1e9;
const ll LINF = 1e18;
const int MOD = 1e9 + 7; //998244353;
const ld PI = acos((ld)-1.0);
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
template <typename T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
bool ckmin(T &a, const T &b) { return b < a ? a = b, 1 : 0; }
template <typename T>
bool ckmax(T &a, const T &b) { return b > a ? a = b, 1 : 0; }
template <typename A, typename B>
ostream &operator<<(ostream &os, const pair<A, B> &p)
{
return os << '(' << p.first << ", " << p.second << ')';
}
template <typename T_container, typename T = typename enable_if<!is_same<T_container, string>::value, typename T_container::value_type>::type>
ostream &operator<<(ostream &os, const T_container &v)
{
os << '{';
string sep;
for (const T &x : v)
os << sep << x, sep = ", ";
return os << '}';
}
void dbg_out()
{
cerr << endl;
}
template <typename Head, typename... Tail>
void dbg_out(Head H, Tail... T)
{
cerr << ' ' << H;
dbg_out(T...);
}
#ifdef LOCAL
#define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...) 42
#endif
inline namespace RecursiveLambda{
template <typename Fun>
struct y_combinator_result{
Fun fun_;
template <typename T>
explicit y_combinator_result(T &&fun): fun_(forward<T>(fun)){}
template <typename...Args>
decltype(auto) operator()(Args &&...args){
return fun_(ref(*this), forward<Args>(args)...);
}
};
template <typename Fun>
decltype(auto) y_combinator(Fun &&fun){
return y_combinator_result<decay_t<Fun>>(forward<Fun>(fun));
}
};
void setIO(string s) // USACO
{
#ifndef LOCAL
freopen((s + ".in").c_str(), "r", stdin);
freopen((s + ".out").c_str(), "w", stdout);
#endif
}
/**
* Description: modular arithmetic operations
* Source:
* KACTL
* https://codeforces.com/blog/entry/63903
* https://codeforces.com/contest/1261/submission/65632855 (tourist)
* https://codeforces.com/contest/1264/submission/66344993 (ksun)
* also see https://github.com/ecnerwala/cp-book/blob/master/src/modnum.hpp (ecnerwal)
* Verification:
* https://open.kattis.com/problems/modulararithmetic
*/
template<int MOD, int RT> struct mint {
static const int mod = MOD;
static constexpr mint rt() { return RT; } // primitive root for FFT
int v; explicit operator int() const { return v; } // explicit -> don't silently convert to int
mint() { v = 0; }
mint(ll _v) { v = int((-MOD < _v && _v < MOD) ? _v : _v % MOD);
if (v < 0) v += MOD; }
bool operator==(const mint& o) const{
return v == o.v; }
friend bool operator!=(const mint& a, const mint& b) {
return !(a == b); }
friend bool operator<(const mint& a, const mint& b) {
return a.v < b.v; }
friend istream& operator>>(istream& is, const mint& o){
ll v; is >> v; o = mint(v); return is; }
friend ostream& operator<<(ostream& os, const mint& o){
os << o.v; return os; }
mint& operator+=(const mint& m) {
if ((v += m.v) >= MOD) v -= MOD;
return *this; }
mint& operator-=(const mint& m) {
if ((v -= m.v) < 0) v += MOD;
return *this; }
mint& operator*=(const mint& m) {
v = int((ll)v*m.v%MOD); return *this; }
mint& operator/=(const mint& m) { return (*this) *= inv(m); }
friend mint pow(mint a, ll p) {
mint ans = 1; assert(p >= 0);
for (; p; p /= 2, a *= a) if (p&1) ans *= a;
return ans; }
friend mint inv(const mint& a) { assert(a.v != 0);
return pow(a,MOD-2); }
mint operator-() const { return mint(-v); }
mint& operator++() { return *this += 1; }
mint& operator--() { return *this -= 1; }
friend mint operator+(mint a, const mint& b) { return a += b; }
friend mint operator-(mint a, const mint& b) { return a -= b; }
friend mint operator*(mint a, const mint& b) { return a *= b; }
friend mint operator/(mint a, const mint& b) { return a /= b; }
};
using Mint1 = mint<MOD,5>; // 5 is primitive root for both common mods
using Mint2 = mint<998244353, 5>;
using pmm = pair<Mint1, Mint2>;
const int N = 500;
const int B = 9973;
const pii d[] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};
bool vis[N][N][8];
Mint1 pow1[N + 1];
Mint2 pow2[N + 1];
void precalc() {
pow1[0] = 1;
pow2[0] = 1;
FOR(i, 1, N + 1) {
pow1[i] = pow1[i - 1] * B;
pow2[i] = pow2[i - 1] * B;
}
}
void solve()
{
int n, m, k;
cin >> n >> m >> k;
vector<string> grid(n);
for (auto &e : grid) cin >> e;
ll denom = (1LL * 8 * n * m) * (1LL * 8 * n * m);
ll num {};
vpi res;
F0R(i, 8) {
F0R(r, n) {
F0R(c, m) {
if (vis[r][c][i]) continue;
int rr = r, cc = c;
vpi a;
vector<pmm> hsh;
do{
a.pb({rr, cc});
vis[rr][cc][i] = 1;
rr += d[i].fi;
cc += d[i].se;
if (rr >= n) rr -= n;
if (cc >= m) cc -= m;
if (rr < 0) rr += n;
if (cc < 0) cc += m;
}while (rr != r || cc != c);
hsh.resize(sz(a) * 2 + 1);
F0R(ii, sz(a) * 2) {
auto [x, y] = a[ii % sz(a)];
hsh[ii + 1].fi = hsh[ii].fi * B + grid[x][y];
hsh[ii + 1].se = hsh[ii].se * B + grid[x][y];
}
int nn = sz(a);
int q = k / nn;
int r = k % nn;
pmm Base;
Base.fi = (pow((Mint1)B, nn * (q)) - 1) / (pow((Mint1)B, nn) - 1) * pow((Mint1)B, r);
Base.se = (pow((Mint2)B, nn * (q)) - 1) / (pow((Mint2)B, nn) - 1) * pow((Mint2)B, r);
dbg(nn, q, r, Base);
F0R(ii, sz(a)) {
pmm power{};
power.fi = hsh[ii + sz(a)].fi - hsh[ii].fi * pow1[sz(a)];
power.se = hsh[ii + sz(a)].se - hsh[ii].se * pow2[sz(a)];
power.fi *= Base.fi;
power.se *= Base.se;
power.fi += hsh[ii + r].fi - hsh[ii].fi * pow1[r];
power.se += hsh[ii + r].se - hsh[ii].se * pow2[r];
res.pb({(int)power.fi, (int)power.se});
}
dbg(res.back());
dbg(hsh);
}
}
}
sort(all(res));
F0R(i, sz(res)) {
int cnt = 1;
while (i + 1 < sz(res) && res[i] == res[i + 1]) {
cnt++, i++;
}
num += 1LL * cnt * cnt;
}
ll g = gcd(denom, num);
denom /= g, num /= g;
cout << num << '/' << denom << '\n';
}
int main()
{
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(cin.failbit);
int testcase=1;
precalc();
// cin >> testcase;
while (testcase--)
{
solve();
}
}
Compilation message (stderr)
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |