Submission #534411

# Submission time Handle Problem Language Result Execution time Memory
534411 2022-03-08T06:46:51 Z wiwiho Olympic Bus (JOI20_ho_t4) C++14
100 / 100
911 ms 4508 KB
#include <bits/stdc++.h>
#include <bits/extc++.h>

#define StarBurstStream ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);
#define iter(a) a.begin(), a.end()
#define riter(a) a.rbegin(), a.rend()
#define lsort(a) sort(iter(a))
#define gsort(a) sort(riter(a))
#define pb(a) push_back(a)
#define eb(a) emplace_back(a)
#define pf(a) push_front(a)
#define ef(a) emplace_front(a)
#define pob pop_back()
#define pof pop_front()
#define mp(a, b) make_pair(a, b)
#define F first
#define S second
#define mt make_tuple
#define gt(t, i) get<i>(t)
#define tomax(a, b) ((a) = max((a), (b)))
#define tomin(a, b) ((a) = min((a), (b)))
#define topos(a) ((a) = (((a) % MOD + MOD) % MOD))
#define uni(a) a.resize(unique(iter(a)) - a.begin())
#define printv(a, b) {bool pvaspace=false; \
for(auto pva : a){ \
    if(pvaspace) b << " "; pvaspace=true;\
    b << pva;\
}\
b << "\n";}

using namespace std;
using namespace __gnu_pbds;

typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;

using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pdd = pair<ld, ld>;
using tiii = tuple<int, int, int>;

const ll MOD = 1000000007;
const ll MAX = 1LL << 60;

template<typename A, typename B>
ostream& operator<<(ostream& o, pair<A, B> p){
    return o << '(' << p.F << ',' << p.S << ')';
}

ll ifloor(ll a, ll b){
    if(b < 0) a *= -1, b *= -1;
    if(a < 0) return (a - b + 1) / b;
    else return a / b;
}

ll iceil(ll a, ll b){
    if(b < 0) a *= -1, b *= -1;
    if(a > 0) return (a + b - 1) / b;
    else return a / b;
}

struct edge{
    int from, to, c, d, id;
};

int main(){
    StarBurstStream

    int n, m;
    cin >> n >> m;

    vector<vector<edge>> g(n + 1);
    vector<vector<ll>> dis(n + 1, vector<ll>(n + 1, MAX));
    vector<edge> e(m + 1);
    for(int i = 1; i <= n; i++) dis[i][i] = 0;
    for(int i = 1; i <= m; i++){
        int u, v, c, d;
        cin >> u >> v >> c >> d;
        g[u].eb(e[i] = edge({u, v, c, d, i}));
        dis[u][v] = min(dis[u][v], (ll)c);
    }

    for(int k = 1; k <= n; k++){
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++){
                dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
            }
        }
    }
    
    vector<bool> tr(m + 1);
    auto eliminate = [&](int s){
        vector<ll> d(n + 1, MAX);
        vector<int> lst(n + 1, -1);
        d[s] = 0;
        std::priority_queue<pll, vector<pll>, greater<>> pq;
        pq.push(mp(0, s));
        while(!pq.empty()){
            int now = pq.top().S;
            ll nd = pq.top().F;
            pq.pop();
            if(nd != d[now]) continue;
            if(lst[now] != -1) tr[lst[now]] = true;
            for(auto i : g[now]){
                if(nd + i.c >= d[i.to]) continue;
                d[i.to] = nd + i.c;
                pq.push(mp(nd + i.c, i.to));
                lst[i.to] = i.id;
            }
        }
    };
    eliminate(1);
    eliminate(n);

    auto calc = [&](int s, int t, int no){
        vector<ll> d(n + 1, MAX);
        d[s] = 0;
        std::priority_queue<pll, vector<pll>, greater<>> pq;
        pq.push(mp(0, s));
        while(!pq.empty()){
            int now = pq.top().S;
            ll nd = pq.top().F;
            pq.pop();
            if(nd != d[now]) continue;
            for(auto i : g[now]){
                if(i.id == no) continue;
                if(nd + i.c >= d[i.to]) continue;
                d[i.to] = nd + i.c;
                pq.push(mp(nd + i.c, i.to));
            }
        }
        return d[t];
    };

    ll ans = dis[1][n] + dis[n][1];
    for(int i = 1; i <= m; i++){
        if(tr[i]){
            g[e[i].to].eb(edge({e[i].to, e[i].from, e[i].c, e[i].d, -1}));
            ans = min(ans, calc(1, n, i) + calc(n, 1, i) + e[i].d);
            g[e[i].to].pob;
        }
        else{
            ans = min(ans, 
                    min(dis[1][n], dis[1][e[i].to] + dis[e[i].from][n] + e[i].c) + 
                    min(dis[n][1], dis[n][e[i].to] + dis[e[i].from][1] + e[i].c) + 
                    e[i].d);
            //cerr << "test " << i << " " << ans << "\n";
        }
    }

    if(ans >= MAX) ans = -1;
    cout << ans << "\n";

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 15 ms 700 KB Output is correct
2 Correct 7 ms 576 KB Output is correct
3 Correct 22 ms 712 KB Output is correct
4 Correct 23 ms 716 KB Output is correct
5 Correct 2 ms 324 KB Output is correct
6 Correct 9 ms 576 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 1 ms 324 KB Output is correct
10 Correct 24 ms 716 KB Output is correct
11 Correct 29 ms 716 KB Output is correct
12 Correct 26 ms 732 KB Output is correct
13 Correct 11 ms 712 KB Output is correct
14 Correct 16 ms 716 KB Output is correct
15 Correct 23 ms 708 KB Output is correct
16 Correct 22 ms 704 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 114 ms 4156 KB Output is correct
2 Correct 109 ms 4268 KB Output is correct
3 Correct 111 ms 4284 KB Output is correct
4 Correct 21 ms 780 KB Output is correct
5 Correct 14 ms 716 KB Output is correct
6 Correct 9 ms 564 KB Output is correct
7 Correct 9 ms 668 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 45 ms 4348 KB Output is correct
10 Correct 42 ms 4368 KB Output is correct
11 Correct 99 ms 4348 KB Output is correct
12 Correct 94 ms 4444 KB Output is correct
13 Correct 75 ms 4344 KB Output is correct
14 Correct 64 ms 4508 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 716 KB Output is correct
2 Correct 9 ms 588 KB Output is correct
3 Correct 67 ms 3140 KB Output is correct
4 Correct 10 ms 640 KB Output is correct
5 Correct 93 ms 4056 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 35 ms 4060 KB Output is correct
9 Correct 39 ms 4092 KB Output is correct
10 Correct 61 ms 4212 KB Output is correct
11 Correct 63 ms 4084 KB Output is correct
12 Correct 88 ms 4152 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 1 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 0 ms 204 KB Output is correct
18 Correct 1 ms 204 KB Output is correct
19 Correct 67 ms 4236 KB Output is correct
20 Correct 63 ms 4064 KB Output is correct
21 Correct 62 ms 4140 KB Output is correct
22 Correct 59 ms 3976 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 15 ms 700 KB Output is correct
2 Correct 7 ms 576 KB Output is correct
3 Correct 22 ms 712 KB Output is correct
4 Correct 23 ms 716 KB Output is correct
5 Correct 2 ms 324 KB Output is correct
6 Correct 9 ms 576 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 1 ms 324 KB Output is correct
10 Correct 24 ms 716 KB Output is correct
11 Correct 29 ms 716 KB Output is correct
12 Correct 26 ms 732 KB Output is correct
13 Correct 11 ms 712 KB Output is correct
14 Correct 16 ms 716 KB Output is correct
15 Correct 23 ms 708 KB Output is correct
16 Correct 22 ms 704 KB Output is correct
17 Correct 114 ms 4156 KB Output is correct
18 Correct 109 ms 4268 KB Output is correct
19 Correct 111 ms 4284 KB Output is correct
20 Correct 21 ms 780 KB Output is correct
21 Correct 14 ms 716 KB Output is correct
22 Correct 9 ms 564 KB Output is correct
23 Correct 9 ms 668 KB Output is correct
24 Correct 1 ms 204 KB Output is correct
25 Correct 45 ms 4348 KB Output is correct
26 Correct 42 ms 4368 KB Output is correct
27 Correct 99 ms 4348 KB Output is correct
28 Correct 94 ms 4444 KB Output is correct
29 Correct 75 ms 4344 KB Output is correct
30 Correct 64 ms 4508 KB Output is correct
31 Correct 16 ms 716 KB Output is correct
32 Correct 9 ms 588 KB Output is correct
33 Correct 67 ms 3140 KB Output is correct
34 Correct 10 ms 640 KB Output is correct
35 Correct 93 ms 4056 KB Output is correct
36 Correct 1 ms 204 KB Output is correct
37 Correct 1 ms 204 KB Output is correct
38 Correct 35 ms 4060 KB Output is correct
39 Correct 39 ms 4092 KB Output is correct
40 Correct 61 ms 4212 KB Output is correct
41 Correct 63 ms 4084 KB Output is correct
42 Correct 88 ms 4152 KB Output is correct
43 Correct 1 ms 204 KB Output is correct
44 Correct 1 ms 204 KB Output is correct
45 Correct 1 ms 204 KB Output is correct
46 Correct 0 ms 204 KB Output is correct
47 Correct 0 ms 204 KB Output is correct
48 Correct 1 ms 204 KB Output is correct
49 Correct 67 ms 4236 KB Output is correct
50 Correct 63 ms 4064 KB Output is correct
51 Correct 62 ms 4140 KB Output is correct
52 Correct 59 ms 3976 KB Output is correct
53 Correct 124 ms 4016 KB Output is correct
54 Correct 140 ms 4120 KB Output is correct
55 Correct 113 ms 4148 KB Output is correct
56 Correct 22 ms 716 KB Output is correct
57 Correct 21 ms 716 KB Output is correct
58 Correct 82 ms 3352 KB Output is correct
59 Correct 97 ms 3356 KB Output is correct
60 Correct 144 ms 3312 KB Output is correct
61 Correct 88 ms 3380 KB Output is correct
62 Correct 92 ms 3408 KB Output is correct
63 Correct 118 ms 3280 KB Output is correct
64 Correct 642 ms 4044 KB Output is correct
65 Correct 682 ms 4124 KB Output is correct
66 Correct 911 ms 4048 KB Output is correct
67 Correct 15 ms 3252 KB Output is correct
68 Correct 57 ms 4288 KB Output is correct
69 Correct 45 ms 4300 KB Output is correct
70 Correct 86 ms 4412 KB Output is correct
71 Correct 86 ms 4288 KB Output is correct
72 Correct 89 ms 4420 KB Output is correct
73 Correct 118 ms 4432 KB Output is correct
74 Correct 80 ms 4448 KB Output is correct