Submission #529966

# Submission time Handle Problem Language Result Execution time Memory
529966 2022-02-24T07:49:51 Z fhvirus Fences (JOI18_fences) C++17
100 / 100
16 ms 676 KB
// Knapsack DP is harder than FFT.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; typedef pair<int,int> pii;
#define ff first
#define ss second
#define pb emplace_back
#define AI(x) begin(x),end(x)
#ifdef OWO
#define debug(args...) SDF(#args, args)
#define OIU(args...) ostream& operator<<(ostream&O,args)
#define LKJ(S,B,E,F) template<class...T>OIU(S<T...>s){O<<B;int c=0;for(auto i:s)O<<(c++?", ":"")<<F;return O<<E;}
LKJ(vector,'[',']',i)LKJ(deque,'[',']',i)LKJ(set,'{','}',i)LKJ(multiset,'{','}',i)LKJ(unordered_set,'{','}',i)LKJ(map,'{','}',i.ff<<':'<<i.ss)LKJ(unordered_map,'{','}',i.ff<<':'<<i.ss)
template<class...T>void SDF(const char* s,T...a){int c=sizeof...(T);if(!c){cerr<<"\033[1;32mvoid\033[0m\n";return;}(cerr<<"\033[1;32m("<<s<<") = (",...,(cerr<<a<<(--c?", ":")\033[0m\n")));}
template<class T,size_t N>OIU(array<T,N>a){return O<<vector<T>(AI(a));}template<class...T>OIU(pair<T...>p){return O<<'('<<p.ff<<','<<p.ss<<')';}template<class...T>OIU(tuple<T...>t){return O<<'(',apply([&O](T...s){int c=0;(...,(O<<(c++?", ":"")<<s));},t),O<<')';}
#else
#define debug(...) ((void)0)
#endif

const double INF = 1e18;
const double eps = 1e-9;
int sign(double d) { return (d >= eps) - (d <= eps); }

struct Vec {
	double x, y;
	Vec () = default;
	Vec (const double& _x, const double& _y): x(_x), y(_y) {}
	const Vec operator + (const Vec& o) const { return Vec(x + o.x, y + o.y); }
	const Vec operator - (const Vec& o) const { return Vec(x - o.x, y - o.y); }
	const Vec operator * (const double& v) const { return Vec(x * v, y * v); }
	const double operator * (const Vec& o) const { return x * o.x + y * o.y; }
	const double operator ^ (const Vec& o) const { return x * o.y - y * o.x; }
	const double abs2 () const { return x * x + y * y; }
	const double abs () const { return sqrt(x * x + y * y); }
};
struct Seg {
	Vec a, b;
	Seg () = default;
	Seg (const Vec& _a, const Vec& _b): a(_a), b(_b) {}
	Seg (const int& _a, const int& _b, const int& _c, const int& _d)
		: a(_a, _b), b(_c, _d) {}
};
const int ori(const Vec& o, const Vec& a, const Vec& b)
{ return sign((a - o) ^ (b - o)); }
const bool intersect(const Seg& a, const Seg& b) {
	return ori(a.a, a.b, b.a) * ori(a.a, a.b, b.b) < 0
		and ori(b.a, b.b, a.a) * ori(b.a, b.b, a.b) < 0;
}
const bool has_T(const Vec& v, const Seg& s) {
	return sign((v - s.a) * (s.b - s.a)) > 0
		and sign((v - s.b) * (s.a - s.b)) > 0;
}
const Vec T_point(const Vec& v, const Seg& s) {
	const Vec AB = s.b - s.a;
	const Vec AV = v - s.a;
	return s.a + AB * ((AB * AV) / AB.abs2());
}

Seg diaA, diaB, uwu;
double dis[2];
void add_edge(const Vec& a, const Vec& b, const Vec& c, const Vec& d) {
	Seg ab(a, b), bc(b, c), cd(c, d);
	if (intersect(bc, diaA) or intersect(bc, diaB))
		return;
	bool owo = intersect(ab, uwu) xor intersect(bc, uwu) xor intersect(cd, uwu);
	dis[owo] = min(dis[owo], (c - b).abs());
}
void solve(const Seg& a, const Seg& b) {
	dis[0] = dis[1] = INF;
	add_edge(a.a, a.a, b.b, b.a);
	add_edge(a.a, a.b, b.b, b.a);
	add_edge(a.a, a.a, b.a, b.a);
	add_edge(a.a, a.b, b.a, b.a);
	if (has_T(a.a, b)) add_edge(a.a, a.a, T_point(a.a, b), b.a);
	if (has_T(a.b, b)) add_edge(a.a, a.b, T_point(a.b, b), b.a);
	if (has_T(b.a, a)) add_edge(a.a, T_point(b.a, a), b.a, b.a);
	if (has_T(b.b, a)) add_edge(a.a, T_point(b.b, a), b.b, b.a);
}

signed main() {
	ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);

	int N, S; cin >> N >> S;
	vector<Seg> segs;
	for (int A, B, C, D, i = 0; i < N; ++i) {
		cin >> A >> B >> C >> D;
		segs.emplace_back(A, B, C, D);
	}

	N = N + 4;
	for (const int& x: {S, -S})
		for (const int& y: {S, -S})
			segs.emplace_back(x, y, x, y);
	diaA = Seg(S, S, -S, -S);
	diaB = Seg(S, -S, -S, S);
	uwu = Seg(0, 0, 1, 3000);

	vector<vector<double>> dp(N * 2, vector<double>(N * 2, INF));
	for (int i = 0; i < N; ++i)
		for (int j = 0; j < N; ++j) {
			solve(segs[i], segs[j]);
			dp[i * 2][j * 2] = dp[i * 2 + 1][j * 2 + 1] = dis[0];
			dp[i * 2 + 1][j * 2] = dp[i * 2][j * 2 + 1] = dis[1];
		}

	for (int k = 0; k < N * 2; ++k)
		for (int i = 0; i < N * 2; ++i) if (dp[i][k] != INF)
			for (int j = 0; j < N * 2; ++j) if (dp[k][j] != INF)
				dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);

	double ans = INF;
	for (int i = 0; i < N; ++i)
		ans = min(ans, dp[i * 2][i * 2 + 1]);
	
	cout << setprecision(9) << fixed << ans << '\n';

	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 328 KB Output is correct
2 Correct 1 ms 324 KB Output is correct
3 Correct 1 ms 320 KB Output is correct
4 Correct 1 ms 216 KB Output is correct
5 Correct 1 ms 324 KB Output is correct
6 Correct 0 ms 316 KB Output is correct
7 Correct 0 ms 216 KB Output is correct
8 Correct 1 ms 216 KB Output is correct
9 Correct 0 ms 320 KB Output is correct
10 Correct 0 ms 216 KB Output is correct
11 Correct 0 ms 216 KB Output is correct
12 Correct 0 ms 216 KB Output is correct
13 Correct 0 ms 216 KB Output is correct
14 Correct 1 ms 216 KB Output is correct
15 Correct 0 ms 220 KB Output is correct
16 Correct 1 ms 216 KB Output is correct
17 Correct 1 ms 216 KB Output is correct
18 Correct 0 ms 216 KB Output is correct
19 Correct 0 ms 216 KB Output is correct
20 Correct 0 ms 216 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 328 KB Output is correct
2 Correct 1 ms 324 KB Output is correct
3 Correct 1 ms 320 KB Output is correct
4 Correct 1 ms 216 KB Output is correct
5 Correct 1 ms 324 KB Output is correct
6 Correct 0 ms 316 KB Output is correct
7 Correct 0 ms 216 KB Output is correct
8 Correct 1 ms 216 KB Output is correct
9 Correct 0 ms 320 KB Output is correct
10 Correct 0 ms 216 KB Output is correct
11 Correct 0 ms 216 KB Output is correct
12 Correct 0 ms 216 KB Output is correct
13 Correct 0 ms 216 KB Output is correct
14 Correct 1 ms 216 KB Output is correct
15 Correct 0 ms 220 KB Output is correct
16 Correct 1 ms 216 KB Output is correct
17 Correct 1 ms 216 KB Output is correct
18 Correct 0 ms 216 KB Output is correct
19 Correct 0 ms 216 KB Output is correct
20 Correct 0 ms 216 KB Output is correct
21 Correct 0 ms 216 KB Output is correct
22 Correct 0 ms 216 KB Output is correct
23 Correct 1 ms 216 KB Output is correct
24 Correct 1 ms 216 KB Output is correct
25 Correct 1 ms 320 KB Output is correct
26 Correct 0 ms 216 KB Output is correct
27 Correct 1 ms 216 KB Output is correct
28 Correct 1 ms 216 KB Output is correct
29 Correct 0 ms 216 KB Output is correct
30 Correct 1 ms 216 KB Output is correct
31 Correct 1 ms 220 KB Output is correct
32 Correct 0 ms 216 KB Output is correct
33 Correct 1 ms 204 KB Output is correct
34 Correct 0 ms 204 KB Output is correct
35 Correct 0 ms 204 KB Output is correct
36 Correct 1 ms 304 KB Output is correct
37 Correct 1 ms 204 KB Output is correct
38 Correct 0 ms 204 KB Output is correct
39 Correct 0 ms 204 KB Output is correct
40 Correct 0 ms 204 KB Output is correct
41 Correct 0 ms 216 KB Output is correct
42 Correct 1 ms 216 KB Output is correct
43 Correct 1 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 328 KB Output is correct
2 Correct 1 ms 324 KB Output is correct
3 Correct 1 ms 320 KB Output is correct
4 Correct 1 ms 216 KB Output is correct
5 Correct 1 ms 324 KB Output is correct
6 Correct 0 ms 316 KB Output is correct
7 Correct 0 ms 216 KB Output is correct
8 Correct 1 ms 216 KB Output is correct
9 Correct 0 ms 320 KB Output is correct
10 Correct 0 ms 216 KB Output is correct
11 Correct 0 ms 216 KB Output is correct
12 Correct 0 ms 216 KB Output is correct
13 Correct 0 ms 216 KB Output is correct
14 Correct 1 ms 216 KB Output is correct
15 Correct 0 ms 220 KB Output is correct
16 Correct 1 ms 216 KB Output is correct
17 Correct 1 ms 216 KB Output is correct
18 Correct 0 ms 216 KB Output is correct
19 Correct 0 ms 216 KB Output is correct
20 Correct 0 ms 216 KB Output is correct
21 Correct 0 ms 216 KB Output is correct
22 Correct 0 ms 216 KB Output is correct
23 Correct 1 ms 216 KB Output is correct
24 Correct 1 ms 216 KB Output is correct
25 Correct 1 ms 320 KB Output is correct
26 Correct 0 ms 216 KB Output is correct
27 Correct 1 ms 216 KB Output is correct
28 Correct 1 ms 216 KB Output is correct
29 Correct 0 ms 216 KB Output is correct
30 Correct 1 ms 216 KB Output is correct
31 Correct 1 ms 220 KB Output is correct
32 Correct 0 ms 216 KB Output is correct
33 Correct 1 ms 204 KB Output is correct
34 Correct 0 ms 204 KB Output is correct
35 Correct 0 ms 204 KB Output is correct
36 Correct 1 ms 304 KB Output is correct
37 Correct 1 ms 204 KB Output is correct
38 Correct 0 ms 204 KB Output is correct
39 Correct 0 ms 204 KB Output is correct
40 Correct 0 ms 204 KB Output is correct
41 Correct 0 ms 216 KB Output is correct
42 Correct 1 ms 216 KB Output is correct
43 Correct 1 ms 208 KB Output is correct
44 Correct 13 ms 564 KB Output is correct
45 Correct 13 ms 588 KB Output is correct
46 Correct 12 ms 668 KB Output is correct
47 Correct 12 ms 588 KB Output is correct
48 Correct 15 ms 588 KB Output is correct
49 Correct 12 ms 588 KB Output is correct
50 Correct 16 ms 588 KB Output is correct
51 Correct 11 ms 588 KB Output is correct
52 Correct 12 ms 588 KB Output is correct
53 Correct 12 ms 560 KB Output is correct
54 Correct 13 ms 588 KB Output is correct
55 Correct 12 ms 588 KB Output is correct
56 Correct 13 ms 600 KB Output is correct
57 Correct 13 ms 600 KB Output is correct
58 Correct 12 ms 600 KB Output is correct
59 Correct 12 ms 676 KB Output is correct
60 Correct 13 ms 600 KB Output is correct
61 Correct 13 ms 588 KB Output is correct
62 Correct 1 ms 308 KB Output is correct
63 Correct 1 ms 204 KB Output is correct
64 Correct 8 ms 588 KB Output is correct
65 Correct 8 ms 588 KB Output is correct
66 Correct 7 ms 588 KB Output is correct
67 Correct 11 ms 588 KB Output is correct
68 Correct 13 ms 588 KB Output is correct
69 Correct 13 ms 572 KB Output is correct
70 Correct 10 ms 588 KB Output is correct
71 Correct 11 ms 588 KB Output is correct
72 Correct 11 ms 588 KB Output is correct