Submission #529938

# Submission time Handle Problem Language Result Execution time Memory
529938 2022-02-24T05:47:33 Z fhvirus Sandcastle 2 (JOI22_ho_t5) C++17
71 / 100
5000 ms 21888 KB
/*
#include <bits/stdc++.h>
using namespace std;
*/

// Knapsack DP is harder than FFT.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; typedef pair<int,int> pii;
#define ff first
#define ss second
#define pb emplace_back
#define AI(x) begin(x),end(x)
#ifdef OWO
#define debug(args...) SDF(#args, args)
#define OIU(args...) ostream& operator<<(ostream&O,args)
#define LKJ(S,B,E,F) template<class...T>OIU(S<T...>s){O<<B;int c=0;for(auto i:s)O<<(c++?", ":"")<<F;return O<<E;}
LKJ(vector,'[',']',i)LKJ(deque,'[',']',i)LKJ(set,'{','}',i)LKJ(multiset,'{','}',i)LKJ(unordered_set,'{','}',i)LKJ(map,'{','}',i.ff<<':'<<i.ss)LKJ(unordered_map,'{','}',i.ff<<':'<<i.ss)
template<class...T>void SDF(const char* s,T...a){int c=sizeof...(T);if(!c){cerr<<"\033[1;32mvoid\033[0m\n";return;}(cerr<<"\033[1;32m("<<s<<") = (",...,(cerr<<a<<(--c?", ":")\033[0m\n")));}
template<class T,size_t N>OIU(array<T,N>a){return O<<vector<T>(AI(a));}template<class...T>OIU(pair<T...>p){return O<<'('<<p.ff<<','<<p.ss<<')';}template<class...T>OIU(tuple<T...>t){return O<<'(',apply([&O](T...s){int c=0;(...,(O<<(c++?", ":"")<<s));},t),O<<')';}
#else
#define debug(...) ((void)0)
#endif

// d, u, r, l
const int di[4] = {1, -1, 0, 0};
const int dj[4] = {0, 0, 1, -1};

const int kN = 51215;
int H, W, A[kN], AT[kN];
int B[9][9][kN], C[9][6][kN], D[6][6][kN], S[6][kN];

int get_sum(int th, int i, int lb, int rb) {
	if (rb - lb + 1 == 1) return D[th][0][i * W + lb];
	if (rb - lb + 1 == 2) return D[th][1][i * W + lb];
	if (rb - lb + 1 == 3) return D[th][2][i * W + lb];
	if (rb - lb + 1 == 4) return D[th][3][i * W + lb] + D[th][4][i * W + lb + 2];
	return D[th][3][i * W + lb] + 
		(S[th][i * W + rb - 1] - S[th][i * W + lb + 2]) +
		D[th][4][i * W + rb - 1];
}

int main() {
	ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);

	cin >> H >> W;
	for (int i = 0; i < H * W; ++i)
		cin >> A[i];

	/*
	if (H < W) {
		for (int i = 0; i < H * W; ++i)
			AT[(i % W) * H + (i / W)] = A[i];
		for (int i = 0; i < H * W; ++i)
			A[i] = AT[i];
		swap(H, W);
	}
	*/

	// B[th][tw][i]: in degree of cell i when U-D side type th, L-R type tw 
	// 0:  - -[x]- -  1:  - -[x -]-  2:  - -[x - -|
	// 3:  -[- x]- -  4:  -[- x -]-  5:  -[- x - -|
	// 6: |- - x]- -  7: |- - x -]-  8: |- - x - -|
	// [: Edge |: not necessary an edge
	for (int th = 0; th < 9; ++th)
		for (int tw = 0; tw < 9; ++tw)
			for (int i = 0; i < H; ++i)
				for (int j = 0; j < W; ++j) {
					int bu = i - th / 3, bd = i + th % 3;
					int bl = j - tw / 3, br = j + tw % 3;
					if (bu < 0 or bd >= H or bl < 0 or br >= W)
						continue;
					debug(bu, bd, bl, br, i, j);
					// iterate neighbor
					int indeg = 0;
					for (int d = 0; d < 4; ++d) {
						int ni = i + di[d], nj = j + dj[d];
						if (ni < bu or ni > bd or nj < bl or nj > br or A[i * W + j] > A[ni * W + nj])
							continue;
						// iterate neighbor's neighbor
						int to_num = A[i * W + j];
						for (int dn = 0; dn < 4; ++dn) {
							int mi = ni + di[dn], mj = nj + dj[dn];
							if (mi < bu or mi > bd or mj < bl or mj > br or A[mi * W + mj] > A[ni * W + nj])
								continue;
							to_num = max(to_num, A[mi * W + mj]);
						}
						if (to_num == A[i * W + j])
							++indeg;
						debug(ni, nj, to_num);
					}
					B[th][tw][i * W + j] = (indeg == 0);
				}

	// Gather the values of cells at the edges.
	// C[th][tw][i]: in degree of cell i when U-D side type th, L-R type tw 
	// 0: [x]  1: [x -] + [- x]  2: [x - -] + [- x -] + [- - x]
	// 3: [x - - -| + [- x - -|  4: |- - x -] + |- - - x]
	// 5: |- - x - -|
	// The left bound of a type is the same.
	// D goes the same way.
	for (int th = 0; th < 9; ++th)
		for (int i = 0; i < H * W; ++i) {
			C[th][0][i] = B[th][0][i];
			C[th][1][i] = B[th][1][i] + B[th][3][i + 1];
			C[th][2][i] = B[th][2][i] + B[th][4][i + 1] + B[th][6][i + 2];
			C[th][3][i] = B[th][2][i] + B[th][5][i + 1];
			C[th][4][i] = B[th][7][i] + B[th][6][i + 1];
			C[th][5][i] = B[th][8][i];
		}
	for (int tw = 0; tw < 6; ++tw)
		for (int i = 0; i < H * W; ++i) {
			D[0][tw][i] = C[0][tw][i];
			D[1][tw][i] = C[1][tw][i] + C[3][tw][i + W];
			D[2][tw][i] = C[2][tw][i] + C[4][tw][i + W] + C[6][tw][i + 2 * W];
			D[3][tw][i] = C[2][tw][i] + C[5][tw][i + W];
			D[4][tw][i] = C[7][tw][i] + C[6][tw][i + W];
			D[5][tw][i] = C[8][tw][i];
		}

	// Calculate prefix sum
	// S[th][i]: prefix sum when U-D side type th, L-R must be type 5 (inner ones)
	for (int th = 0; th < 6; ++th)
		for (int i = 0; i < H * W; ++i)
			S[th][i + 1] = S[th][i] + D[th][5][i];

	int ans = 0;
	for (int lb = 0; lb < W; ++lb)
		for (int rb = lb; rb < W; ++rb)
			for (int ub = 0; ub < H; ++ub) {
				int cur = 0, val;
				for (int db = ub; db < H; ++db) {
					if (db - ub + 1 == 1) val = get_sum(0, ub, lb, rb);
					if (db - ub + 1 == 2) val = get_sum(1, ub, lb, rb);
					if (db - ub + 1 == 3) val = get_sum(2, ub, lb, rb);
					if (db - ub + 1 == 4) val = get_sum(3, ub, lb, rb) + get_sum(4, ub + 2, lb, rb);
					if (db - ub + 1 >= 5) {
						cur += get_sum(5, db - 2, lb, rb);
						val = get_sum(3, ub, lb, rb) + cur + get_sum(4, db - 1, lb, rb);
					}
					ans += (val == 1);
					debug(lb, rb, ub, db, val);
				}
			}

	cout << ans << '\n';

	return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 716 KB Output is correct
2 Execution timed out 5036 ms 21888 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1092 KB Output is correct
2 Correct 1 ms 1092 KB Output is correct
3 Correct 1 ms 1100 KB Output is correct
4 Correct 1 ms 1100 KB Output is correct
5 Correct 2 ms 1088 KB Output is correct
6 Correct 1 ms 1084 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1092 KB Output is correct
2 Correct 1 ms 1092 KB Output is correct
3 Correct 1 ms 1100 KB Output is correct
4 Correct 1 ms 1100 KB Output is correct
5 Correct 2 ms 1088 KB Output is correct
6 Correct 1 ms 1084 KB Output is correct
7 Correct 10 ms 1356 KB Output is correct
8 Correct 10 ms 1356 KB Output is correct
9 Correct 11 ms 2156 KB Output is correct
10 Correct 10 ms 2184 KB Output is correct
11 Correct 6 ms 1484 KB Output is correct
12 Correct 8 ms 1636 KB Output is correct
13 Correct 9 ms 2124 KB Output is correct
14 Correct 6 ms 1740 KB Output is correct
15 Correct 11 ms 2092 KB Output is correct
16 Correct 11 ms 2172 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1092 KB Output is correct
2 Correct 1 ms 1092 KB Output is correct
3 Correct 1 ms 1100 KB Output is correct
4 Correct 1 ms 1100 KB Output is correct
5 Correct 2 ms 1088 KB Output is correct
6 Correct 1 ms 1084 KB Output is correct
7 Correct 10 ms 1356 KB Output is correct
8 Correct 10 ms 1356 KB Output is correct
9 Correct 11 ms 2156 KB Output is correct
10 Correct 10 ms 2184 KB Output is correct
11 Correct 6 ms 1484 KB Output is correct
12 Correct 8 ms 1636 KB Output is correct
13 Correct 9 ms 2124 KB Output is correct
14 Correct 6 ms 1740 KB Output is correct
15 Correct 11 ms 2092 KB Output is correct
16 Correct 11 ms 2172 KB Output is correct
17 Correct 190 ms 3764 KB Output is correct
18 Correct 153 ms 5952 KB Output is correct
19 Correct 140 ms 5644 KB Output is correct
20 Correct 138 ms 5956 KB Output is correct
21 Correct 136 ms 5952 KB Output is correct
22 Correct 135 ms 5872 KB Output is correct
23 Correct 129 ms 5736 KB Output is correct
24 Correct 114 ms 5288 KB Output is correct
25 Correct 155 ms 5964 KB Output is correct
26 Correct 157 ms 6084 KB Output is correct
27 Correct 150 ms 5952 KB Output is correct
28 Correct 148 ms 5960 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1092 KB Output is correct
2 Correct 1 ms 1092 KB Output is correct
3 Correct 1 ms 1100 KB Output is correct
4 Correct 1 ms 1100 KB Output is correct
5 Correct 2 ms 1088 KB Output is correct
6 Correct 1 ms 1084 KB Output is correct
7 Correct 10 ms 1356 KB Output is correct
8 Correct 10 ms 1356 KB Output is correct
9 Correct 11 ms 2156 KB Output is correct
10 Correct 10 ms 2184 KB Output is correct
11 Correct 6 ms 1484 KB Output is correct
12 Correct 8 ms 1636 KB Output is correct
13 Correct 9 ms 2124 KB Output is correct
14 Correct 6 ms 1740 KB Output is correct
15 Correct 11 ms 2092 KB Output is correct
16 Correct 11 ms 2172 KB Output is correct
17 Correct 190 ms 3764 KB Output is correct
18 Correct 153 ms 5952 KB Output is correct
19 Correct 140 ms 5644 KB Output is correct
20 Correct 138 ms 5956 KB Output is correct
21 Correct 136 ms 5952 KB Output is correct
22 Correct 135 ms 5872 KB Output is correct
23 Correct 129 ms 5736 KB Output is correct
24 Correct 114 ms 5288 KB Output is correct
25 Correct 155 ms 5964 KB Output is correct
26 Correct 157 ms 6084 KB Output is correct
27 Correct 150 ms 5952 KB Output is correct
28 Correct 148 ms 5960 KB Output is correct
29 Execution timed out 5042 ms 21428 KB Time limit exceeded
30 Halted 0 ms 0 KB -