Submission #529737

# Submission time Handle Problem Language Result Execution time Memory
529737 2022-02-23T14:46:23 Z LucaDantas Fortune Telling 2 (JOI14_fortune_telling2) C++17
100 / 100
771 ms 207844 KB
#include <bits/stdc++.h>
using namespace std;

constexpr int maxn = 2e5+10, inf = 0x3f3f3f3f;

struct PersistentSegmentTree {
	struct Node {
		Node *l, *r;
		int val;
		Node() : l(this), r(this), val(0) {}
	};
	int t = 0;
	Node *root[maxn]; // we have a root for each version of the seg
	
	PersistentSegmentTree() { root[0] = new Node(); }

	void upd(int pos) {
		++t;
		root[t] = upd(root[t-1], 1, inf, pos);
	}

	Node* upd(Node *node, int i, int j, int pos) { // add v to interval l, r
		Node *aq = new Node();
		*aq = *node;
		
		aq->val++;

		if(i == j) return aq;

		int m = (i+j) >> 1;
		if(pos <= m)
			aq->l = upd(aq->l, i, m, pos);
		else
			aq->r = upd(aq->r, m+1, j, pos);

		return aq;
	}

	int query(Node *node, int i, int j, int l, int r) { // query the interval [l, r] on this version of the seg
		if(i > r || j < l) return 0;
		if(i >= l && j <= r) return node->val;
		int m = (i+j) >> 1;
		return query(node->l, i, m, l, r) + query(node->r, m+1, j, l, r);
	}
} segTime;

struct SegmentTree {
	int tree[4*maxn], a[maxn]; // we have a root for each version of the seg

	void build(int node, int i, int j) {
		if(i == j) return (void)(tree[node] = a[i]);
		int m = (i+j) >> 1;
		build(node<<1, i, m);
		build(node<<1|1, m+1, j);
		tree[node] = max(tree[node<<1], tree[node<<1|1]);
	}

	int query(int node, int i, int j, int l, int r) { // query the interval [l, r]
		if(i > r || j < l) return 0;
		if(i >= l && j <= r) return tree[node];
		int m = (i+j) >> 1;
		return max(query(node<<1, i, m, l, r), query(node<<1|1, m+1, j, l, r));
	}
} segX;

int A[maxn], B[maxn];
pair<int,int> X[maxn];

int main() {
	int n, k; scanf("%d %d", &n, &k);
	
	for(int i = 1; i <= n; i++)
		scanf("%d %d", A+i, B+i);

	for(int i = 1; i <= k; i++) {
		int x; scanf("%d", &x); X[i] = {x, i};
		segTime.upd(x);
	}

	sort(X+1, X+k+1);
	for(int i = 1; i <= k; i++)
		segX.a[i] = X[i].second;
	segX.build(1, 1, k);

	long long ans = 0;
	for(int i = 1; i <= n; i++) {
		int a = A[i], b = B[i];
		if(a > b) swap(a, b);
		// quero achar o evento com o maior tempo tal que o valor dele está contido em [a, b[
		int last = 0;
		if(a != b) {
			int itL = (lower_bound(X+1, X+1+k, pair<int,int>(a, 0)) - X);
			int itR = (lower_bound(X+1, X+1+k, pair<int,int>(b, 0)) - X) - 1;

			// printf("%d %d -> %d %d\n", a, b, itL, itR);
			
			last = segX.query(1, 1, k, itL, itR);
		} else last = 0;

		// printf("%d %d -> %d\n", a, b, last);

		if(last != 0)
			ans += (segTime.query(segTime.root[segTime.t], 1, inf, b, inf) -
					segTime.query(segTime.root[last], 1, inf, b, inf)) % 2 == 0 ? b : a;
		else
			ans += segTime.query(segTime.root[segTime.t], 1, inf, b, inf) % 2 == 0 ? A[i] : B[i];
	}

	printf("%lld\n", ans);
}

Compilation message

fortune_telling2.cpp: In function 'int main()':
fortune_telling2.cpp:70:17: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   70 |  int n, k; scanf("%d %d", &n, &k);
      |            ~~~~~^~~~~~~~~~~~~~~~~
fortune_telling2.cpp:73:8: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   73 |   scanf("%d %d", A+i, B+i);
      |   ~~~~~^~~~~~~~~~~~~~~~~~~
fortune_telling2.cpp:76:15: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   76 |   int x; scanf("%d", &x); X[i] = {x, i};
      |          ~~~~~^~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 1340 KB Output is correct
2 Correct 4 ms 1356 KB Output is correct
3 Correct 3 ms 1356 KB Output is correct
4 Correct 5 ms 1356 KB Output is correct
5 Correct 3 ms 1356 KB Output is correct
6 Correct 3 ms 1356 KB Output is correct
7 Correct 3 ms 1356 KB Output is correct
8 Correct 3 ms 1348 KB Output is correct
9 Correct 2 ms 1348 KB Output is correct
10 Correct 4 ms 1228 KB Output is correct
11 Correct 5 ms 1356 KB Output is correct
12 Correct 3 ms 1356 KB Output is correct
13 Correct 5 ms 1356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 1340 KB Output is correct
2 Correct 4 ms 1356 KB Output is correct
3 Correct 3 ms 1356 KB Output is correct
4 Correct 5 ms 1356 KB Output is correct
5 Correct 3 ms 1356 KB Output is correct
6 Correct 3 ms 1356 KB Output is correct
7 Correct 3 ms 1356 KB Output is correct
8 Correct 3 ms 1348 KB Output is correct
9 Correct 2 ms 1348 KB Output is correct
10 Correct 4 ms 1228 KB Output is correct
11 Correct 5 ms 1356 KB Output is correct
12 Correct 3 ms 1356 KB Output is correct
13 Correct 5 ms 1356 KB Output is correct
14 Correct 27 ms 10700 KB Output is correct
15 Correct 52 ms 21076 KB Output is correct
16 Correct 83 ms 31304 KB Output is correct
17 Correct 150 ms 41892 KB Output is correct
18 Correct 118 ms 41980 KB Output is correct
19 Correct 119 ms 41896 KB Output is correct
20 Correct 115 ms 41900 KB Output is correct
21 Correct 108 ms 41756 KB Output is correct
22 Correct 118 ms 41420 KB Output is correct
23 Correct 95 ms 41424 KB Output is correct
24 Correct 88 ms 41368 KB Output is correct
25 Correct 88 ms 41388 KB Output is correct
26 Correct 110 ms 41648 KB Output is correct
27 Correct 105 ms 41900 KB Output is correct
28 Correct 100 ms 41816 KB Output is correct
29 Correct 107 ms 41892 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 1340 KB Output is correct
2 Correct 4 ms 1356 KB Output is correct
3 Correct 3 ms 1356 KB Output is correct
4 Correct 5 ms 1356 KB Output is correct
5 Correct 3 ms 1356 KB Output is correct
6 Correct 3 ms 1356 KB Output is correct
7 Correct 3 ms 1356 KB Output is correct
8 Correct 3 ms 1348 KB Output is correct
9 Correct 2 ms 1348 KB Output is correct
10 Correct 4 ms 1228 KB Output is correct
11 Correct 5 ms 1356 KB Output is correct
12 Correct 3 ms 1356 KB Output is correct
13 Correct 5 ms 1356 KB Output is correct
14 Correct 27 ms 10700 KB Output is correct
15 Correct 52 ms 21076 KB Output is correct
16 Correct 83 ms 31304 KB Output is correct
17 Correct 150 ms 41892 KB Output is correct
18 Correct 118 ms 41980 KB Output is correct
19 Correct 119 ms 41896 KB Output is correct
20 Correct 115 ms 41900 KB Output is correct
21 Correct 108 ms 41756 KB Output is correct
22 Correct 118 ms 41420 KB Output is correct
23 Correct 95 ms 41424 KB Output is correct
24 Correct 88 ms 41368 KB Output is correct
25 Correct 88 ms 41388 KB Output is correct
26 Correct 110 ms 41648 KB Output is correct
27 Correct 105 ms 41900 KB Output is correct
28 Correct 100 ms 41816 KB Output is correct
29 Correct 107 ms 41892 KB Output is correct
30 Correct 353 ms 202448 KB Output is correct
31 Correct 467 ms 203604 KB Output is correct
32 Correct 514 ms 204844 KB Output is correct
33 Correct 704 ms 207756 KB Output is correct
34 Correct 340 ms 202288 KB Output is correct
35 Correct 713 ms 207636 KB Output is correct
36 Correct 681 ms 207652 KB Output is correct
37 Correct 671 ms 207780 KB Output is correct
38 Correct 709 ms 207776 KB Output is correct
39 Correct 763 ms 207696 KB Output is correct
40 Correct 585 ms 207364 KB Output is correct
41 Correct 702 ms 207804 KB Output is correct
42 Correct 771 ms 207720 KB Output is correct
43 Correct 499 ms 207120 KB Output is correct
44 Correct 490 ms 206992 KB Output is correct
45 Correct 473 ms 207016 KB Output is correct
46 Correct 494 ms 205892 KB Output is correct
47 Correct 483 ms 205652 KB Output is correct
48 Correct 591 ms 207732 KB Output is correct
49 Correct 634 ms 207844 KB Output is correct