Submission #525894

# Submission time Handle Problem Language Result Execution time Memory
525894 2022-02-13T06:03:55 Z mjhmjh1104 Mountains and Valleys (CCO20_day1problem3) C++17
21 / 25
7000 ms 421612 KB
#pragma GCC optimize("O3")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")

#include <set>
#include <cstdio>
#include <vector>
#include <utility>
#include <iterator>
#include <algorithm>
using namespace std;
 
struct Item {
    int posde = (int)-1e9;
    int negde = (int)-1e9;
    int ans = (int)-1e9;
} tree_split[1048576];
 
Item f(const Item a, const Item b) {
    Item ret = { max(a.posde, b.posde), max(a.negde, b.negde), max(a.ans, b.ans) };
    ret.ans = max(ret.ans, a.posde + b.negde);
    return ret;
}
 
int query_deg(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return (int)-1e9;
    if (l <= b && e <= r) return tree_split[i].negde;
    int m = (b + e) / 2;
    return max(query_deg(i * 2 + 1, b, m, l, r), query_deg(i * 2 + 2, m + 1, e, l, r));
}
 
Item query_split(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return Item{ (int)-1e9, (int)-1e9, (int)-1e9 };
    if (l <= b && e <= r) return tree_split[i];
    int m = (b + e) / 2;
    return f(query_split(i * 2 + 1, b, m, l, r), query_split(i * 2 + 2, m + 1, e, l, r));
}
 
int n, m;
vector<int> tree[500006], child[500006];
vector<pair<int, int>> adj[500006];
int sz[500006], depth[500006], par[500006];
int in[500006], top[500006], T;
int sp[19][500006];
multiset<int> lt_depth[500006];
int max_depth[500006], rev_max_depth[500006], dist[500006], rev_dist[500006];
int edge[500006];
 
int query_hld_half(int u, int v) {
    int ret = (int)-1e9;
    int pv = -1;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
        ret = max(ret, (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin()) - depth[u]);
        if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
        ret = max(ret, query_deg(0, 0, 524287, in[top[u]], in[u] - 1));
        pv = top[u];
        u = par[top[u]];
    }
    if (depth[u] < depth[v]) swap(u, v);
    if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
    ret = max(ret, (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin()) - depth[u]);
    if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
    ret = max(ret, query_deg(0, 0, 524287, in[v], in[u] - 1));
    return ret;
}
 
int query_hld_res(int u, int v) {
    vector<Item> z;
    int pv = -1;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
        int V = (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin());
        z.push_back(Item{ V + depth[u], V - depth[u], (int)-1e9 });
        if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
        z.push_back(query_split(0, 0, 524287, in[top[u]], in[u] - 1));
        if (z.back().posde == (int)-1e9) z.pop_back();
        pv = top[u];
        u = par[top[u]];
    }
    if (depth[u] < depth[v]) swap(u, v);
    if (pv != -1) lt_depth[u].erase(lt_depth[u].find(max_depth[pv] + 1));
    int V = (lt_depth[u].empty() ? 0 : *lt_depth[u].rbegin());
    z.push_back(Item{ V + depth[u], V - depth[u], (int)-1e9 });
    if (pv != -1) lt_depth[u].insert(max_depth[pv] + 1);
    z.push_back(query_split(0, 0, 524287, in[v], in[u] - 1));
    if (z.back().posde == (int)-1e9) z.pop_back();
    reverse(z.begin(), z.end());
    int ret = (int)-1e9;
    for (auto &i: z) ret = max(ret, i.ans);
    for (int i = 0; i < (int)z.size(); i++) for (int j = i + 1; j < (int)z.size(); j++) ret = max(ret, z[i].posde + z[j].negde);
    return ret;
}
 
int dfs_dist(int x) {
    vector<int> v;
    max_depth[x] = 0;
    dist[x] = 0;
    for (auto &i: child[x]) {
        v.push_back(dfs_dist(i) + 1);
        max_depth[x] = max(max_depth[x], v.back());
        dist[x] = max(dist[x], dist[i]);
    }
    int v0 = max_element(v.begin(), v.end()) - v.begin();
    int X = v[v0];
    if (!v.empty()) v[v0] = 0;
    int v1 = max_element(v.begin(), v.end()) - v.begin();
    v[v0] = X;
    if (!v.empty()) dist[x] = max(dist[x], v[v0]);
    if ((int)v.size() > 1) dist[x] = max(dist[x], v[v0] + v[v1]);
    return max_depth[x];
}
 
void dfs_rev_dist(int x) {
    multiset<int> v, u, w;
    v.insert(rev_max_depth[x]);
    u.insert(rev_dist[x]);
    for (auto &i: child[x]) {
        v.insert(max_depth[i] + 1);
        u.insert(dist[i]);
    }
    for (auto &i: child[x]) {
        v.erase(v.find(max_depth[i] + 1));
        u.erase(u.find(dist[i]));
        if (!u.empty()) rev_dist[i] = *u.rbegin();
        if (!v.empty()) rev_dist[i] = max(rev_dist[i], rev_max_depth[i] = *v.rbegin() + 1);
        if ((int)v.size() > 1) rev_dist[i] = max(rev_dist[i], *v.rbegin() + *prev(prev(v.end())));
        v.insert(max_depth[i] + 1);
        u.insert(dist[i]);
    }
    for (auto &i: child[x]) dfs_rev_dist(i);
}
 
void dfs_edge(int x) {
    multiset<int> v;
    for (auto &i: child[x]) v.insert(max_depth[i] + 1);
    for (auto &i: child[x]) {
        v.erase(v.find(max_depth[i] + 1));
        if ((int)v.size() > 1) edge[i] = *v.rbegin() + *prev(prev(v.end()));
        else if (!v.empty()) edge[i] = *v.rbegin();
        v.insert(max_depth[i] + 1);
    }
    for (auto &i: child[x]) dfs_edge(i);
}
 
void dfs_child(int x, int prev = -1) {
    par[x] = prev;
    for (auto &i: tree[x]) if (i != prev) {
        child[x].push_back(i);
        dfs_child(i, x);
    }
}
 
int dfs_sz(int x) {
    sz[x] = 1;
    for (auto &i: child[x]) {
        depth[i] = depth[x] + 1;
        sz[x] += dfs_sz(i);
        if (sz[i] > sz[child[x][0]]) swap(child[x][0], i);
    }
    return sz[x];
}
 
void dfs_hld(int x) {
    in[x] = T++;
    for (auto &i: child[x]) {
        top[i] = (i == child[x][0] ? top[x] : i);
        dfs_hld(i);
    }
}
 
int lca(int u, int v) {
    int ret = 0;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        ret += depth[u] - depth[par[top[u]]];
        u = par[top[u]];
    }
    if (depth[u] > depth[v]) swap(u, v);
    return u;
}
 
int pr(int x, int y) {
    for (int t = 18; t >= 0; t--) if (y >= 1 << t) {
        y -= 1 << t;
        x = sp[t][x];
    }
    return x;
}
 
int tree_dist[1048576], tree_edge[1048576];
 
int query_dist(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return 0;
    if (l <= b && e <= r) return tree_dist[i];
    int m = (b + e) / 2;
    return max(query_dist(i * 2 + 1, b, m, l, r), query_dist(i * 2 + 2, m + 1, e, l, r));
}
 
int query_edge(int i, int b, int e, int l, int r) {
    if (r < l || r < b || e < l) return 0;
    if (l <= b && e <= r) return tree_edge[i];
    int m = (b + e) / 2;
    return max(query_edge(i * 2 + 1, b, m, l, r), query_edge(i * 2 + 2, m + 1, e, l, r));
}
 
vector<pair<int, int>> lt;
 
void query_hld(int u, int v) {
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        lt.push_back({ in[top[u]], in[u] });
        u = par[top[u]];
    }
    lt.push_back({ min(in[u], in[v]), max(in[u], in[v]) });
}
 
int query_hld_dist(int u, int v, int x, int y) {
    lt.clear();
    query_hld(u, v);
    sort(lt.begin(), lt.end());
    int ret = max(query_dist(0, 0, 524287, x, lt[0].first - 1), query_dist(0, 0, 524287, lt.back().second + 1, y));
    for (int i = 1; i < (int)lt.size(); i++) ret = max(ret, query_dist(0, 0, 524287, lt[i - 1].second + 1, lt[i].first - 1));
    return ret;
}
 
int query_hld_edge(int u, int v) {
    int ret = 0;
    while (top[u] != top[v]) {
        if (depth[top[u]] < depth[top[v]]) swap(u, v);
        ret = max(ret, query_edge(0, 0, 524287, in[top[u]], in[u]));
        u = par[top[u]];
    }
    ret = max(ret, query_edge(0, 0, 524287, min(in[u], in[v]), max(in[u], in[v])));
    return ret;
}
 
int main() {
    scanf("%d%d", &n, &m);
    while (m--) {
        int x, y, w;
        scanf("%d%d%d", &x, &y, &w);
        if (w == 1) {
            tree[x].push_back(y);
            tree[y].push_back(x);
        } else {
            adj[x].push_back({ y, w });
            adj[y].push_back({ x, w });
        }
    }
    dfs_child(0);
    dfs_sz(0);
    dfs_hld(0);
    dfs_dist(0);
    dfs_rev_dist(0);
    dfs_edge(0);
    for (int i = 0; i < n; i++) sp[0][i] = par[i];
    for (int t = 1; t < 19; t++) for (int i = 0; i < n; i++) {
        if (sp[t - 1][i] == -1) sp[t][i] = -1;
        else sp[t][i] = sp[t - 1][sp[t - 1][i]];
    }
    for (int i = 0; i < n; i++) for (auto &j: child[i]) lt_depth[i].insert(max_depth[j] + 1);
    for (int i = 0; i < n; i++) {
        tree_dist[524287 + in[i]] = dist[i];
        tree_edge[524287 + in[i]] = edge[i];
        int v = 0;
        if (!child[i].empty()) lt_depth[i].erase(lt_depth[i].find(max_depth[child[i][0]] + 1));
        if (!lt_depth[i].empty()) v = *lt_depth[i].rbegin();
        if (!child[i].empty()) lt_depth[i].insert(max_depth[child[i][0]] + 1);
        tree_split[524287 + in[i]] = { v + depth[i], v - depth[i], (int)-1e9 };
    }
    for (int i = 524286; i >= 0; i--) {
        tree_dist[i] = max(tree_dist[i * 2 + 1], tree_dist[i * 2 + 2]);
        tree_edge[i] = max(tree_edge[i * 2 + 1], tree_edge[i * 2 + 2]);
        tree_split[i] = f(tree_split[i * 2 + 1], tree_split[i * 2 + 2]);
    }
    int zero = 2 * (n - 1) - dist[0], one = (int)1e9;
    for (int i = 0; i < n; i++) for (auto &j: adj[i]) if (i < j.first) {
        int l = lca(i, j.first);
        int ds = depth[i] + depth[j.first] - depth[l] - depth[l];
        int curr = j.second + 2 * (n - 1) - ds - 1;
        int y = max(rev_dist[l] - 1, query_hld_dist(i, j.first, in[l], in[l] + sz[l] - 1) - 1);
        int A = (i == l ? -1 : pr(i, depth[i] - depth[l] - 1));
        int B = (j.first == l ? -1 : pr(j.first, depth[j.first] - depth[l] - 1));
        int Ap = (depth[i] - depth[l] - 2 >= 0 ? pr(i, depth[i] - depth[l] - 2) : -1);
        int Bp = (depth[j.first] - depth[l] - 2 >= 0 ? pr(j.first, depth[j.first] - depth[l] - 2) : -1);
        if (A != -1) lt_depth[l].erase(lt_depth[l].find(max_depth[A] + 1));
        if (B != -1) lt_depth[l].erase(lt_depth[l].find(max_depth[B] + 1));
        int G = 0;
        if (!lt_depth[l].empty()) G = *lt_depth[l].rbegin();
        if (!lt_depth[l].empty()) y = max(y, *lt_depth[l].rbegin() + rev_max_depth[l] - 1);
        else y = max(y, rev_max_depth[l] - 1);
        if ((int)lt_depth[l].size() > 1) y = max(y, *lt_depth[l].rbegin() + *prev(prev(lt_depth[l].end())) - 1);
        if (A != -1) lt_depth[l].insert(max_depth[A] + 1);
        if (B != -1) lt_depth[l].insert(max_depth[B] + 1);
        if (Ap != -1) y = max(y, query_hld_edge(Ap, i) - 1);
        if (Bp != -1) y = max(y, query_hld_edge(Bp, j.first) - 1);
        int Alt = (A == -1 ? (int)-1e9 : query_hld_half(A, i) + depth[l]);
        int Brt = (B == -1 ? (int)-1e9 : query_hld_half(B, j.first) + depth[l]);
        int Lt = max(rev_max_depth[l], G);
        y = max(y, Alt + max(Brt, Lt) + 1);
        y = max(y, max(Alt, Lt) + Brt + 1);
        if (A != -1) y = max(y, query_hld_res(A, i) + 1);
        if (B != -1) y = max(y, query_hld_res(B, j.first) + 1);
        curr -= y;
        one = min(one, curr);
    }
    printf("%d", min(zero, one));
}

Compilation message

Main.cpp: In function 'int main()':
Main.cpp:241:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  241 |     scanf("%d%d", &n, &m);
      |     ~~~~~^~~~~~~~~~~~~~~~
Main.cpp:244:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  244 |         scanf("%d%d%d", &x, &y, &w);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 39 ms 69476 KB Output is correct
2 Correct 47 ms 69444 KB Output is correct
3 Correct 45 ms 69492 KB Output is correct
4 Correct 37 ms 69436 KB Output is correct
5 Correct 38 ms 69496 KB Output is correct
6 Correct 43 ms 69444 KB Output is correct
7 Correct 42 ms 69452 KB Output is correct
8 Correct 40 ms 69464 KB Output is correct
9 Correct 37 ms 69392 KB Output is correct
10 Correct 39 ms 69440 KB Output is correct
11 Correct 38 ms 69408 KB Output is correct
12 Correct 42 ms 69476 KB Output is correct
13 Correct 41 ms 69444 KB Output is correct
14 Correct 39 ms 69464 KB Output is correct
15 Correct 38 ms 69452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 39 ms 69476 KB Output is correct
2 Correct 47 ms 69444 KB Output is correct
3 Correct 45 ms 69492 KB Output is correct
4 Correct 37 ms 69436 KB Output is correct
5 Correct 38 ms 69496 KB Output is correct
6 Correct 43 ms 69444 KB Output is correct
7 Correct 42 ms 69452 KB Output is correct
8 Correct 40 ms 69464 KB Output is correct
9 Correct 37 ms 69392 KB Output is correct
10 Correct 39 ms 69440 KB Output is correct
11 Correct 38 ms 69408 KB Output is correct
12 Correct 42 ms 69476 KB Output is correct
13 Correct 41 ms 69444 KB Output is correct
14 Correct 39 ms 69464 KB Output is correct
15 Correct 38 ms 69452 KB Output is correct
16 Correct 40 ms 69492 KB Output is correct
17 Correct 38 ms 69480 KB Output is correct
18 Correct 46 ms 69444 KB Output is correct
19 Correct 49 ms 69480 KB Output is correct
20 Correct 38 ms 69444 KB Output is correct
21 Correct 37 ms 69480 KB Output is correct
22 Correct 37 ms 69444 KB Output is correct
23 Correct 39 ms 69688 KB Output is correct
24 Correct 38 ms 69452 KB Output is correct
25 Correct 39 ms 69508 KB Output is correct
26 Correct 39 ms 69468 KB Output is correct
27 Correct 37 ms 69452 KB Output is correct
28 Correct 37 ms 69444 KB Output is correct
29 Correct 37 ms 69452 KB Output is correct
30 Correct 37 ms 69444 KB Output is correct
31 Correct 38 ms 69444 KB Output is correct
32 Correct 37 ms 69452 KB Output is correct
33 Correct 38 ms 69452 KB Output is correct
34 Correct 37 ms 69444 KB Output is correct
35 Correct 38 ms 69420 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 57 ms 72272 KB Output is correct
2 Correct 54 ms 72668 KB Output is correct
3 Correct 61 ms 71764 KB Output is correct
4 Correct 62 ms 71336 KB Output is correct
5 Correct 68 ms 71288 KB Output is correct
6 Correct 53 ms 70960 KB Output is correct
7 Correct 56 ms 72644 KB Output is correct
8 Correct 62 ms 71796 KB Output is correct
9 Correct 60 ms 72400 KB Output is correct
10 Correct 61 ms 71244 KB Output is correct
11 Correct 60 ms 71928 KB Output is correct
12 Correct 66 ms 71232 KB Output is correct
13 Correct 58 ms 71520 KB Output is correct
14 Correct 76 ms 71556 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 39 ms 69476 KB Output is correct
2 Correct 47 ms 69444 KB Output is correct
3 Correct 45 ms 69492 KB Output is correct
4 Correct 37 ms 69436 KB Output is correct
5 Correct 38 ms 69496 KB Output is correct
6 Correct 43 ms 69444 KB Output is correct
7 Correct 42 ms 69452 KB Output is correct
8 Correct 40 ms 69464 KB Output is correct
9 Correct 37 ms 69392 KB Output is correct
10 Correct 39 ms 69440 KB Output is correct
11 Correct 38 ms 69408 KB Output is correct
12 Correct 42 ms 69476 KB Output is correct
13 Correct 41 ms 69444 KB Output is correct
14 Correct 39 ms 69464 KB Output is correct
15 Correct 38 ms 69452 KB Output is correct
16 Correct 40 ms 69492 KB Output is correct
17 Correct 38 ms 69480 KB Output is correct
18 Correct 46 ms 69444 KB Output is correct
19 Correct 49 ms 69480 KB Output is correct
20 Correct 38 ms 69444 KB Output is correct
21 Correct 37 ms 69480 KB Output is correct
22 Correct 37 ms 69444 KB Output is correct
23 Correct 39 ms 69688 KB Output is correct
24 Correct 38 ms 69452 KB Output is correct
25 Correct 39 ms 69508 KB Output is correct
26 Correct 39 ms 69468 KB Output is correct
27 Correct 37 ms 69452 KB Output is correct
28 Correct 37 ms 69444 KB Output is correct
29 Correct 37 ms 69452 KB Output is correct
30 Correct 37 ms 69444 KB Output is correct
31 Correct 38 ms 69444 KB Output is correct
32 Correct 37 ms 69452 KB Output is correct
33 Correct 38 ms 69452 KB Output is correct
34 Correct 37 ms 69444 KB Output is correct
35 Correct 38 ms 69420 KB Output is correct
36 Correct 38 ms 69452 KB Output is correct
37 Correct 38 ms 69444 KB Output is correct
38 Correct 39 ms 69432 KB Output is correct
39 Correct 42 ms 69520 KB Output is correct
40 Correct 38 ms 69452 KB Output is correct
41 Correct 37 ms 69428 KB Output is correct
42 Correct 45 ms 69528 KB Output is correct
43 Correct 38 ms 69500 KB Output is correct
44 Correct 39 ms 69452 KB Output is correct
45 Correct 45 ms 69420 KB Output is correct
46 Correct 45 ms 69440 KB Output is correct
47 Correct 38 ms 69428 KB Output is correct
48 Correct 39 ms 69408 KB Output is correct
49 Correct 40 ms 69500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 39 ms 69476 KB Output is correct
2 Correct 47 ms 69444 KB Output is correct
3 Correct 45 ms 69492 KB Output is correct
4 Correct 37 ms 69436 KB Output is correct
5 Correct 38 ms 69496 KB Output is correct
6 Correct 43 ms 69444 KB Output is correct
7 Correct 42 ms 69452 KB Output is correct
8 Correct 40 ms 69464 KB Output is correct
9 Correct 37 ms 69392 KB Output is correct
10 Correct 39 ms 69440 KB Output is correct
11 Correct 38 ms 69408 KB Output is correct
12 Correct 42 ms 69476 KB Output is correct
13 Correct 41 ms 69444 KB Output is correct
14 Correct 39 ms 69464 KB Output is correct
15 Correct 38 ms 69452 KB Output is correct
16 Correct 40 ms 69492 KB Output is correct
17 Correct 38 ms 69480 KB Output is correct
18 Correct 46 ms 69444 KB Output is correct
19 Correct 49 ms 69480 KB Output is correct
20 Correct 38 ms 69444 KB Output is correct
21 Correct 37 ms 69480 KB Output is correct
22 Correct 37 ms 69444 KB Output is correct
23 Correct 39 ms 69688 KB Output is correct
24 Correct 38 ms 69452 KB Output is correct
25 Correct 39 ms 69508 KB Output is correct
26 Correct 39 ms 69468 KB Output is correct
27 Correct 37 ms 69452 KB Output is correct
28 Correct 37 ms 69444 KB Output is correct
29 Correct 37 ms 69452 KB Output is correct
30 Correct 37 ms 69444 KB Output is correct
31 Correct 38 ms 69444 KB Output is correct
32 Correct 37 ms 69452 KB Output is correct
33 Correct 38 ms 69452 KB Output is correct
34 Correct 37 ms 69444 KB Output is correct
35 Correct 38 ms 69420 KB Output is correct
36 Correct 38 ms 69452 KB Output is correct
37 Correct 38 ms 69444 KB Output is correct
38 Correct 39 ms 69432 KB Output is correct
39 Correct 42 ms 69520 KB Output is correct
40 Correct 38 ms 69452 KB Output is correct
41 Correct 37 ms 69428 KB Output is correct
42 Correct 45 ms 69528 KB Output is correct
43 Correct 38 ms 69500 KB Output is correct
44 Correct 39 ms 69452 KB Output is correct
45 Correct 45 ms 69420 KB Output is correct
46 Correct 45 ms 69440 KB Output is correct
47 Correct 38 ms 69428 KB Output is correct
48 Correct 39 ms 69408 KB Output is correct
49 Correct 40 ms 69500 KB Output is correct
50 Correct 39 ms 69708 KB Output is correct
51 Correct 41 ms 69756 KB Output is correct
52 Correct 44 ms 69604 KB Output is correct
53 Correct 40 ms 69640 KB Output is correct
54 Correct 42 ms 69672 KB Output is correct
55 Correct 41 ms 69564 KB Output is correct
56 Correct 40 ms 69708 KB Output is correct
57 Correct 40 ms 69716 KB Output is correct
58 Correct 39 ms 69672 KB Output is correct
59 Correct 44 ms 69560 KB Output is correct
60 Correct 40 ms 69624 KB Output is correct
61 Correct 43 ms 69584 KB Output is correct
62 Correct 40 ms 69640 KB Output is correct
63 Correct 48 ms 69556 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 39 ms 69476 KB Output is correct
2 Correct 47 ms 69444 KB Output is correct
3 Correct 45 ms 69492 KB Output is correct
4 Correct 37 ms 69436 KB Output is correct
5 Correct 38 ms 69496 KB Output is correct
6 Correct 43 ms 69444 KB Output is correct
7 Correct 42 ms 69452 KB Output is correct
8 Correct 40 ms 69464 KB Output is correct
9 Correct 37 ms 69392 KB Output is correct
10 Correct 39 ms 69440 KB Output is correct
11 Correct 38 ms 69408 KB Output is correct
12 Correct 42 ms 69476 KB Output is correct
13 Correct 41 ms 69444 KB Output is correct
14 Correct 39 ms 69464 KB Output is correct
15 Correct 38 ms 69452 KB Output is correct
16 Correct 40 ms 69492 KB Output is correct
17 Correct 38 ms 69480 KB Output is correct
18 Correct 46 ms 69444 KB Output is correct
19 Correct 49 ms 69480 KB Output is correct
20 Correct 38 ms 69444 KB Output is correct
21 Correct 37 ms 69480 KB Output is correct
22 Correct 37 ms 69444 KB Output is correct
23 Correct 39 ms 69688 KB Output is correct
24 Correct 38 ms 69452 KB Output is correct
25 Correct 39 ms 69508 KB Output is correct
26 Correct 39 ms 69468 KB Output is correct
27 Correct 37 ms 69452 KB Output is correct
28 Correct 37 ms 69444 KB Output is correct
29 Correct 37 ms 69452 KB Output is correct
30 Correct 37 ms 69444 KB Output is correct
31 Correct 38 ms 69444 KB Output is correct
32 Correct 37 ms 69452 KB Output is correct
33 Correct 38 ms 69452 KB Output is correct
34 Correct 37 ms 69444 KB Output is correct
35 Correct 38 ms 69420 KB Output is correct
36 Correct 57 ms 72272 KB Output is correct
37 Correct 54 ms 72668 KB Output is correct
38 Correct 61 ms 71764 KB Output is correct
39 Correct 62 ms 71336 KB Output is correct
40 Correct 68 ms 71288 KB Output is correct
41 Correct 53 ms 70960 KB Output is correct
42 Correct 56 ms 72644 KB Output is correct
43 Correct 62 ms 71796 KB Output is correct
44 Correct 60 ms 72400 KB Output is correct
45 Correct 61 ms 71244 KB Output is correct
46 Correct 60 ms 71928 KB Output is correct
47 Correct 66 ms 71232 KB Output is correct
48 Correct 58 ms 71520 KB Output is correct
49 Correct 76 ms 71556 KB Output is correct
50 Correct 38 ms 69452 KB Output is correct
51 Correct 38 ms 69444 KB Output is correct
52 Correct 39 ms 69432 KB Output is correct
53 Correct 42 ms 69520 KB Output is correct
54 Correct 38 ms 69452 KB Output is correct
55 Correct 37 ms 69428 KB Output is correct
56 Correct 45 ms 69528 KB Output is correct
57 Correct 38 ms 69500 KB Output is correct
58 Correct 39 ms 69452 KB Output is correct
59 Correct 45 ms 69420 KB Output is correct
60 Correct 45 ms 69440 KB Output is correct
61 Correct 38 ms 69428 KB Output is correct
62 Correct 39 ms 69408 KB Output is correct
63 Correct 40 ms 69500 KB Output is correct
64 Correct 39 ms 69708 KB Output is correct
65 Correct 41 ms 69756 KB Output is correct
66 Correct 44 ms 69604 KB Output is correct
67 Correct 40 ms 69640 KB Output is correct
68 Correct 42 ms 69672 KB Output is correct
69 Correct 41 ms 69564 KB Output is correct
70 Correct 40 ms 69708 KB Output is correct
71 Correct 40 ms 69716 KB Output is correct
72 Correct 39 ms 69672 KB Output is correct
73 Correct 44 ms 69560 KB Output is correct
74 Correct 40 ms 69624 KB Output is correct
75 Correct 43 ms 69584 KB Output is correct
76 Correct 40 ms 69640 KB Output is correct
77 Correct 48 ms 69556 KB Output is correct
78 Correct 58 ms 71828 KB Output is correct
79 Correct 61 ms 71992 KB Output is correct
80 Correct 64 ms 71620 KB Output is correct
81 Correct 58 ms 71640 KB Output is correct
82 Correct 58 ms 71248 KB Output is correct
83 Correct 53 ms 70980 KB Output is correct
84 Correct 59 ms 71788 KB Output is correct
85 Correct 58 ms 72004 KB Output is correct
86 Correct 57 ms 72260 KB Output is correct
87 Correct 58 ms 71540 KB Output is correct
88 Correct 64 ms 71516 KB Output is correct
89 Correct 71 ms 71364 KB Output is correct
90 Correct 48 ms 71244 KB Output is correct
91 Correct 45 ms 71448 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 39 ms 69476 KB Output is correct
2 Correct 47 ms 69444 KB Output is correct
3 Correct 45 ms 69492 KB Output is correct
4 Correct 37 ms 69436 KB Output is correct
5 Correct 38 ms 69496 KB Output is correct
6 Correct 43 ms 69444 KB Output is correct
7 Correct 42 ms 69452 KB Output is correct
8 Correct 40 ms 69464 KB Output is correct
9 Correct 37 ms 69392 KB Output is correct
10 Correct 39 ms 69440 KB Output is correct
11 Correct 38 ms 69408 KB Output is correct
12 Correct 42 ms 69476 KB Output is correct
13 Correct 41 ms 69444 KB Output is correct
14 Correct 39 ms 69464 KB Output is correct
15 Correct 38 ms 69452 KB Output is correct
16 Correct 40 ms 69492 KB Output is correct
17 Correct 38 ms 69480 KB Output is correct
18 Correct 46 ms 69444 KB Output is correct
19 Correct 49 ms 69480 KB Output is correct
20 Correct 38 ms 69444 KB Output is correct
21 Correct 37 ms 69480 KB Output is correct
22 Correct 37 ms 69444 KB Output is correct
23 Correct 39 ms 69688 KB Output is correct
24 Correct 38 ms 69452 KB Output is correct
25 Correct 39 ms 69508 KB Output is correct
26 Correct 39 ms 69468 KB Output is correct
27 Correct 37 ms 69452 KB Output is correct
28 Correct 37 ms 69444 KB Output is correct
29 Correct 37 ms 69452 KB Output is correct
30 Correct 37 ms 69444 KB Output is correct
31 Correct 38 ms 69444 KB Output is correct
32 Correct 37 ms 69452 KB Output is correct
33 Correct 38 ms 69452 KB Output is correct
34 Correct 37 ms 69444 KB Output is correct
35 Correct 38 ms 69420 KB Output is correct
36 Correct 57 ms 72272 KB Output is correct
37 Correct 54 ms 72668 KB Output is correct
38 Correct 61 ms 71764 KB Output is correct
39 Correct 62 ms 71336 KB Output is correct
40 Correct 68 ms 71288 KB Output is correct
41 Correct 53 ms 70960 KB Output is correct
42 Correct 56 ms 72644 KB Output is correct
43 Correct 62 ms 71796 KB Output is correct
44 Correct 60 ms 72400 KB Output is correct
45 Correct 61 ms 71244 KB Output is correct
46 Correct 60 ms 71928 KB Output is correct
47 Correct 66 ms 71232 KB Output is correct
48 Correct 58 ms 71520 KB Output is correct
49 Correct 76 ms 71556 KB Output is correct
50 Correct 38 ms 69452 KB Output is correct
51 Correct 38 ms 69444 KB Output is correct
52 Correct 39 ms 69432 KB Output is correct
53 Correct 42 ms 69520 KB Output is correct
54 Correct 38 ms 69452 KB Output is correct
55 Correct 37 ms 69428 KB Output is correct
56 Correct 45 ms 69528 KB Output is correct
57 Correct 38 ms 69500 KB Output is correct
58 Correct 39 ms 69452 KB Output is correct
59 Correct 45 ms 69420 KB Output is correct
60 Correct 45 ms 69440 KB Output is correct
61 Correct 38 ms 69428 KB Output is correct
62 Correct 39 ms 69408 KB Output is correct
63 Correct 40 ms 69500 KB Output is correct
64 Correct 39 ms 69708 KB Output is correct
65 Correct 41 ms 69756 KB Output is correct
66 Correct 44 ms 69604 KB Output is correct
67 Correct 40 ms 69640 KB Output is correct
68 Correct 42 ms 69672 KB Output is correct
69 Correct 41 ms 69564 KB Output is correct
70 Correct 40 ms 69708 KB Output is correct
71 Correct 40 ms 69716 KB Output is correct
72 Correct 39 ms 69672 KB Output is correct
73 Correct 44 ms 69560 KB Output is correct
74 Correct 40 ms 69624 KB Output is correct
75 Correct 43 ms 69584 KB Output is correct
76 Correct 40 ms 69640 KB Output is correct
77 Correct 48 ms 69556 KB Output is correct
78 Correct 58 ms 71828 KB Output is correct
79 Correct 61 ms 71992 KB Output is correct
80 Correct 64 ms 71620 KB Output is correct
81 Correct 58 ms 71640 KB Output is correct
82 Correct 58 ms 71248 KB Output is correct
83 Correct 53 ms 70980 KB Output is correct
84 Correct 59 ms 71788 KB Output is correct
85 Correct 58 ms 72004 KB Output is correct
86 Correct 57 ms 72260 KB Output is correct
87 Correct 58 ms 71540 KB Output is correct
88 Correct 64 ms 71516 KB Output is correct
89 Correct 71 ms 71364 KB Output is correct
90 Correct 48 ms 71244 KB Output is correct
91 Correct 45 ms 71448 KB Output is correct
92 Correct 549 ms 101800 KB Output is correct
93 Correct 555 ms 101516 KB Output is correct
94 Correct 416 ms 96564 KB Output is correct
95 Correct 228 ms 102576 KB Output is correct
96 Correct 194 ms 102352 KB Output is correct
97 Correct 491 ms 114324 KB Output is correct
98 Correct 469 ms 117040 KB Output is correct
99 Correct 496 ms 100644 KB Output is correct
100 Correct 496 ms 103108 KB Output is correct
101 Correct 478 ms 100112 KB Output is correct
102 Correct 373 ms 93368 KB Output is correct
103 Correct 489 ms 111824 KB Output is correct
104 Correct 619 ms 104260 KB Output is correct
105 Correct 540 ms 106684 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 39 ms 69476 KB Output is correct
2 Correct 47 ms 69444 KB Output is correct
3 Correct 45 ms 69492 KB Output is correct
4 Correct 37 ms 69436 KB Output is correct
5 Correct 38 ms 69496 KB Output is correct
6 Correct 43 ms 69444 KB Output is correct
7 Correct 42 ms 69452 KB Output is correct
8 Correct 40 ms 69464 KB Output is correct
9 Correct 37 ms 69392 KB Output is correct
10 Correct 39 ms 69440 KB Output is correct
11 Correct 38 ms 69408 KB Output is correct
12 Correct 42 ms 69476 KB Output is correct
13 Correct 41 ms 69444 KB Output is correct
14 Correct 39 ms 69464 KB Output is correct
15 Correct 38 ms 69452 KB Output is correct
16 Correct 40 ms 69492 KB Output is correct
17 Correct 38 ms 69480 KB Output is correct
18 Correct 46 ms 69444 KB Output is correct
19 Correct 49 ms 69480 KB Output is correct
20 Correct 38 ms 69444 KB Output is correct
21 Correct 37 ms 69480 KB Output is correct
22 Correct 37 ms 69444 KB Output is correct
23 Correct 39 ms 69688 KB Output is correct
24 Correct 38 ms 69452 KB Output is correct
25 Correct 39 ms 69508 KB Output is correct
26 Correct 39 ms 69468 KB Output is correct
27 Correct 37 ms 69452 KB Output is correct
28 Correct 37 ms 69444 KB Output is correct
29 Correct 37 ms 69452 KB Output is correct
30 Correct 37 ms 69444 KB Output is correct
31 Correct 38 ms 69444 KB Output is correct
32 Correct 37 ms 69452 KB Output is correct
33 Correct 38 ms 69452 KB Output is correct
34 Correct 37 ms 69444 KB Output is correct
35 Correct 38 ms 69420 KB Output is correct
36 Correct 57 ms 72272 KB Output is correct
37 Correct 54 ms 72668 KB Output is correct
38 Correct 61 ms 71764 KB Output is correct
39 Correct 62 ms 71336 KB Output is correct
40 Correct 68 ms 71288 KB Output is correct
41 Correct 53 ms 70960 KB Output is correct
42 Correct 56 ms 72644 KB Output is correct
43 Correct 62 ms 71796 KB Output is correct
44 Correct 60 ms 72400 KB Output is correct
45 Correct 61 ms 71244 KB Output is correct
46 Correct 60 ms 71928 KB Output is correct
47 Correct 66 ms 71232 KB Output is correct
48 Correct 58 ms 71520 KB Output is correct
49 Correct 76 ms 71556 KB Output is correct
50 Correct 38 ms 69452 KB Output is correct
51 Correct 38 ms 69444 KB Output is correct
52 Correct 39 ms 69432 KB Output is correct
53 Correct 42 ms 69520 KB Output is correct
54 Correct 38 ms 69452 KB Output is correct
55 Correct 37 ms 69428 KB Output is correct
56 Correct 45 ms 69528 KB Output is correct
57 Correct 38 ms 69500 KB Output is correct
58 Correct 39 ms 69452 KB Output is correct
59 Correct 45 ms 69420 KB Output is correct
60 Correct 45 ms 69440 KB Output is correct
61 Correct 38 ms 69428 KB Output is correct
62 Correct 39 ms 69408 KB Output is correct
63 Correct 40 ms 69500 KB Output is correct
64 Correct 39 ms 69708 KB Output is correct
65 Correct 41 ms 69756 KB Output is correct
66 Correct 44 ms 69604 KB Output is correct
67 Correct 40 ms 69640 KB Output is correct
68 Correct 42 ms 69672 KB Output is correct
69 Correct 41 ms 69564 KB Output is correct
70 Correct 40 ms 69708 KB Output is correct
71 Correct 40 ms 69716 KB Output is correct
72 Correct 39 ms 69672 KB Output is correct
73 Correct 44 ms 69560 KB Output is correct
74 Correct 40 ms 69624 KB Output is correct
75 Correct 43 ms 69584 KB Output is correct
76 Correct 40 ms 69640 KB Output is correct
77 Correct 48 ms 69556 KB Output is correct
78 Correct 58 ms 71828 KB Output is correct
79 Correct 61 ms 71992 KB Output is correct
80 Correct 64 ms 71620 KB Output is correct
81 Correct 58 ms 71640 KB Output is correct
82 Correct 58 ms 71248 KB Output is correct
83 Correct 53 ms 70980 KB Output is correct
84 Correct 59 ms 71788 KB Output is correct
85 Correct 58 ms 72004 KB Output is correct
86 Correct 57 ms 72260 KB Output is correct
87 Correct 58 ms 71540 KB Output is correct
88 Correct 64 ms 71516 KB Output is correct
89 Correct 71 ms 71364 KB Output is correct
90 Correct 48 ms 71244 KB Output is correct
91 Correct 45 ms 71448 KB Output is correct
92 Correct 549 ms 101800 KB Output is correct
93 Correct 555 ms 101516 KB Output is correct
94 Correct 416 ms 96564 KB Output is correct
95 Correct 228 ms 102576 KB Output is correct
96 Correct 194 ms 102352 KB Output is correct
97 Correct 491 ms 114324 KB Output is correct
98 Correct 469 ms 117040 KB Output is correct
99 Correct 496 ms 100644 KB Output is correct
100 Correct 496 ms 103108 KB Output is correct
101 Correct 478 ms 100112 KB Output is correct
102 Correct 373 ms 93368 KB Output is correct
103 Correct 489 ms 111824 KB Output is correct
104 Correct 619 ms 104260 KB Output is correct
105 Correct 540 ms 106684 KB Output is correct
106 Execution timed out 7071 ms 421612 KB Time limit exceeded
107 Halted 0 ms 0 KB -