Submission #521352

# Submission time Handle Problem Language Result Execution time Memory
521352 2022-02-01T21:04:39 Z Alex_tz307 Horses (IOI15_horses) C++17
100 / 100
268 ms 59192 KB
#include <bits/stdc++.h>

using namespace std;
using ld = long double;

const int mod = 1e9 + 7;

void addSelf(int &x, const int &y) {
  x += y;
  if (x >= mod) {
    x -= mod;
  }
}

int add(int x, const int &y) {
  addSelf(x, y);
  return x;
}

void multSelf(int &x, const int &y) {
  x = (int64_t)x * y % mod;
}

int mult(int x, const int &y) {
  multSelf(x, y);
  return x;
}

int Pow(int x, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      multSelf(ans, x);
    }
    multSelf(x, x);
    n >>= 1;
  }
  return ans;
}

int invers(int x) {
  return Pow(x, mod - 2);
}

struct node {
  ld maxSum, lazySum;
  int maxProd, lazyProd;

  node operator + (const node &rhs) const {
    node ret;
    ret.maxSum = max(maxSum, rhs.maxSum);
    if (maxSum == ret.maxSum) {
      ret.maxProd = maxProd;
    } else {
      ret.maxProd = rhs.maxProd;
    }
    ret.lazySum = 0;
    ret.lazyProd = 1;
    return ret;
  };
};

const int kN = 5e5;
int n, Prod = 1, A[1 + kN], B[1 + kN];
ld Sum;

struct ST {
  vector<node> t;

  void init() {
    int dim = 1;
    while (dim < n) {
      dim *= 2;
    }
    t.resize(dim * 2);
  }

  void build(int x, int lx, int rx) {
    if (lx == rx) {
      Sum += log(A[lx]);
      multSelf(Prod, A[lx]);
      t[x] = {Sum + log(B[lx]), 0, mult(Prod, B[lx]), 1};
      return;
    }
    int mid = (lx + rx) / 2;
    build(x * 2, lx, mid);
    build(x * 2 + 1, mid + 1, rx);
    t[x] = t[x * 2] + t[x * 2 + 1];
  }

  void updateNode(int x, ld lazySum, int lazyProd) {
    t[x].maxSum += lazySum;
    t[x].lazySum += lazySum;
    multSelf(t[x].maxProd, lazyProd);
    multSelf(t[x].lazyProd, lazyProd);
  }

  void push(int x) {
    for (int i = 0; i < 2; ++i) {
      updateNode(x * 2 + i, t[x].lazySum, t[x].lazyProd);
    }
    t[x].lazySum = 0;
    t[x].lazyProd = 1;
  }

  void update(int x, int lx, int rx, int st, int dr, ld lazySum, int lazyProd) {
    if (st <= lx && rx <= dr) {
      updateNode(x, lazySum, lazyProd);
      return;
    }
    push(x);
    int mid = (lx + rx) / 2;
    if (st <= mid) {
      update(x * 2, lx, mid, st, dr, lazySum, lazyProd);
    }
    if (mid < dr) {
      update(x * 2 + 1, mid + 1, rx, st, dr, lazySum, lazyProd);
    }
    t[x] = t[x * 2] + t[x * 2 + 1];
  }

  void update(int st, int dr, ld lazySum, int lazyProd) {
    update(1, 1, n, st, dr, lazySum, lazyProd);
  }
} t;

int init(int N, int X[], int Y[]) {
  n = N;
  for (int i = 1; i <= n; ++i) {
    A[i] = X[i - 1];
    B[i] = Y[i - 1];
  }
  t.init();
  t.build(1, 1, n);
  return t.t[1].maxProd;
}

int updateX(int pos, int val) {
  pos += 1;
  t.update(pos, n, log(val) - log(A[pos]), mult(invers(A[pos]), val));
  A[pos] = val;
  return t.t[1].maxProd;
}

int updateY(int pos, int val) {
  pos += 1;
  t.update(pos, pos, log(val) - log(B[pos]), mult(invers(B[pos]), val));
  B[pos] = val;
  return t.t[1].maxProd;
}

Compilation message

horses.cpp: In function 'void multSelf(int&, const int&)':
horses.cpp:21:22: warning: conversion from 'int64_t' {aka 'long int'} to 'int' may change value [-Wconversion]
   21 |   x = (int64_t)x * y % mod;
      |       ~~~~~~~~~~~~~~~^~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 304 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 1 ms 204 KB Output is correct
10 Correct 1 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 1 ms 332 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 1 ms 204 KB Output is correct
20 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 332 KB Output is correct
5 Correct 1 ms 204 KB Output is correct
6 Correct 1 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 1 ms 204 KB Output is correct
10 Correct 1 ms 204 KB Output is correct
11 Correct 1 ms 304 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 0 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 1 ms 204 KB Output is correct
19 Correct 0 ms 204 KB Output is correct
20 Correct 0 ms 204 KB Output is correct
21 Correct 0 ms 204 KB Output is correct
22 Correct 1 ms 300 KB Output is correct
23 Correct 2 ms 332 KB Output is correct
24 Correct 2 ms 448 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 2 ms 460 KB Output is correct
27 Correct 1 ms 440 KB Output is correct
28 Correct 1 ms 332 KB Output is correct
29 Correct 1 ms 332 KB Output is correct
30 Correct 2 ms 332 KB Output is correct
31 Correct 1 ms 332 KB Output is correct
32 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 149 ms 58956 KB Output is correct
2 Correct 268 ms 59116 KB Output is correct
3 Correct 223 ms 59192 KB Output is correct
4 Correct 229 ms 59148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 0 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 1 ms 204 KB Output is correct
8 Correct 0 ms 300 KB Output is correct
9 Correct 0 ms 204 KB Output is correct
10 Correct 1 ms 300 KB Output is correct
11 Correct 1 ms 204 KB Output is correct
12 Correct 0 ms 204 KB Output is correct
13 Correct 0 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 0 ms 204 KB Output is correct
16 Correct 1 ms 204 KB Output is correct
17 Correct 0 ms 300 KB Output is correct
18 Correct 1 ms 204 KB Output is correct
19 Correct 0 ms 204 KB Output is correct
20 Correct 0 ms 204 KB Output is correct
21 Correct 0 ms 204 KB Output is correct
22 Correct 0 ms 204 KB Output is correct
23 Correct 2 ms 460 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 2 ms 460 KB Output is correct
27 Correct 2 ms 332 KB Output is correct
28 Correct 2 ms 332 KB Output is correct
29 Correct 1 ms 332 KB Output is correct
30 Correct 1 ms 332 KB Output is correct
31 Correct 1 ms 332 KB Output is correct
32 Correct 1 ms 332 KB Output is correct
33 Correct 86 ms 58352 KB Output is correct
34 Correct 84 ms 58260 KB Output is correct
35 Correct 97 ms 58356 KB Output is correct
36 Correct 99 ms 58288 KB Output is correct
37 Correct 73 ms 58308 KB Output is correct
38 Correct 72 ms 58244 KB Output is correct
39 Correct 62 ms 58228 KB Output is correct
40 Correct 83 ms 58320 KB Output is correct
41 Correct 61 ms 58316 KB Output is correct
42 Correct 61 ms 58308 KB Output is correct
43 Correct 73 ms 58352 KB Output is correct
44 Correct 72 ms 58164 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 304 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 1 ms 204 KB Output is correct
9 Correct 1 ms 204 KB Output is correct
10 Correct 1 ms 204 KB Output is correct
11 Correct 0 ms 204 KB Output is correct
12 Correct 1 ms 204 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 1 ms 204 KB Output is correct
15 Correct 1 ms 204 KB Output is correct
16 Correct 1 ms 204 KB Output is correct
17 Correct 1 ms 204 KB Output is correct
18 Correct 0 ms 204 KB Output is correct
19 Correct 0 ms 204 KB Output is correct
20 Correct 1 ms 204 KB Output is correct
21 Correct 0 ms 204 KB Output is correct
22 Correct 1 ms 204 KB Output is correct
23 Correct 1 ms 332 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 460 KB Output is correct
26 Correct 2 ms 440 KB Output is correct
27 Correct 1 ms 332 KB Output is correct
28 Correct 2 ms 448 KB Output is correct
29 Correct 1 ms 332 KB Output is correct
30 Correct 1 ms 332 KB Output is correct
31 Correct 1 ms 332 KB Output is correct
32 Correct 1 ms 332 KB Output is correct
33 Correct 156 ms 59112 KB Output is correct
34 Correct 248 ms 58968 KB Output is correct
35 Correct 243 ms 58948 KB Output is correct
36 Correct 236 ms 58932 KB Output is correct
37 Correct 86 ms 57924 KB Output is correct
38 Correct 86 ms 57948 KB Output is correct
39 Correct 99 ms 57960 KB Output is correct
40 Correct 104 ms 57896 KB Output is correct
41 Correct 70 ms 57944 KB Output is correct
42 Correct 73 ms 57908 KB Output is correct
43 Correct 62 ms 57876 KB Output is correct
44 Correct 81 ms 57956 KB Output is correct
45 Correct 60 ms 57932 KB Output is correct
46 Correct 64 ms 58016 KB Output is correct
47 Correct 72 ms 57828 KB Output is correct
48 Correct 73 ms 57884 KB Output is correct
49 Correct 232 ms 58624 KB Output is correct
50 Correct 237 ms 58660 KB Output is correct
51 Correct 182 ms 58692 KB Output is correct
52 Correct 185 ms 58568 KB Output is correct
53 Correct 217 ms 58564 KB Output is correct
54 Correct 162 ms 58500 KB Output is correct
55 Correct 140 ms 57796 KB Output is correct
56 Correct 176 ms 58656 KB Output is correct
57 Correct 150 ms 58564 KB Output is correct
58 Correct 157 ms 58596 KB Output is correct
59 Correct 73 ms 57404 KB Output is correct