Submission #518254

# Submission time Handle Problem Language Result Execution time Memory
518254 2022-01-23T09:11:02 Z Vimmer Geometrija (COCI21_geometrija) C++14
50 / 110
1000 ms 19752 KB
#include <bits/stdc++.h>
#define in(x) freopen(x, "r", stdin)
#define out(x) freopen(x, "w", stdout)

//#pragma GCC optimize("Ofast")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC optimize("-O3")

#define F first
#define S second
#define PB push_back
#define M ll(1e9 + 7)
#define sz(x) int(x.size())
#define N 1001
#define pri(x) cout << x << endl
#define endl '\n'
#define all(x) (x).begin(), (x).end()
#define _ << " " <<

using namespace std;
//typedef tree <ll, null_type, less_equal <ll> , rb_tree_tag, tree_order_statistics_node_update> ordered_set;
//using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef short int si;
typedef unsigned long long ull;

const ld eps = 1e-10;

pair <ld, ld> convert(int x1, int y1, int x2, int y2)
{
    ld k = 0;

    if (x2 != x1)
        k = ld(y2 - y1) / ld(x2 - x1);

    ld b = ld(y1) - k * x1;

    return {k, b};
}

pair <ld, ld> inter(pair <ld, ld> x, pair <ld, ld> y)
{
    if (fabs(x.F - y.F) < eps)
        return {1e18, 1e18};

    ld X = (y.S - x.S) / (x.F - y.F);

    ld Y = (x.F * X + x.S);

    return {X, Y};
}

pair <ld, ld> otr[N][N];

int main()
{
    istream::sync_with_stdio(0); ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);

//    freopen("1.in", "r", stdin);

    int n;

    cin >> n;

    int x[n], y[n];

    for (int i = 0; i < n; i++)
        cin >> x[i] >> y[i];

    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            otr[i][j] = convert(x[i], y[i], x[j], y[j]);

    int ans = 0;

    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
        {
            bool gd = 0;

            for (int u = 0; u < n && !gd; u++)
            {
                if (i == u || j == u)
                    continue;

                for (int t = u + 1; t < n && !gd; t++)
                {
                    if (t == i || t == j)
                        continue;

                    if (x[i] == x[j])
                    {
                        if (x[u] == x[t])
                        {
                            continue;
                        }
                        else if (y[u] == y[t])
                        {
                            if (min(x[u], x[t]) <= x[i] && x[i] <= max(x[u], x[t]) && min(y[i], y[j]) <= y[u] && y[u] <= max(y[i], y[j]))
                            {
                                gd = 1;
                            }

                            continue;
                        }
                        else
                        {
                            if (min(x[u], x[t]) <= x[i] && x[i] <= max(x[u], x[t]))
                            {
                                ld yy = otr[u][t].F * x[i] + otr[u][t].S;

                                if (min(y[i], y[j]) - yy < eps && yy - max(y[i], y[j]) < eps)
                                {
                                    gd = 1;
                                }
                            }

                            continue;
                        }
                    }

                    if (y[i] == y[j])
                    {
                        if (y[u] == y[t])
                        {
                            continue;
                        }
                        else if (x[u] == x[t])
                        {
                            if (min(x[i], x[j]) <= x[u] && x[u] <= max(x[i], x[j]) && min(y[u], y[t]) <= y[i] && y[i] <= max(y[u], y[t]))
                            {
                                gd = 1;
                            }

                            continue;
                        }
                        else
                        {
                            if (min(y[u], y[t]) <= y[i] && y[i] <= max(y[u], y[t]))
                            {
                                ld xx = (y[i] - otr[u][t].S) / otr[u][t].F;

                                if (min(x[i], x[j]) - xx < eps && xx - max(x[i], x[j]) < eps)
                                {
                                    gd = 1;
                                }
                            }

                            continue;
                        }
                    }

                    if (x[u] == x[t])
                    {
                        if (min(x[i], x[j]) <= x[u] && x[u] <= max(x[i], x[j]))
                        {
                            ld yy = otr[i][j].F * x[u] + otr[i][j].S;

                            if (min(y[u], y[t]) - yy < eps && yy - max(y[u], y[t]) < eps)
                            {
                                gd = 1;
                            }
                        }

                        continue;
                    }

                    if (y[u] == y[t])
                    {
                        if (min(y[i], y[j]) <= y[u] && y[u] <= max(y[i], y[j]))
                        {
                            ld xx = (y[u] - otr[i][j].S) / otr[i][j].F;

                            if (min(x[u], x[t]) - xx < eps && xx - max(x[u], x[t]) < eps)
                            {
                                gd = 1;
                            }
                        }

                        continue;
                    }

                    pair <ld, ld> cur = inter(otr[i][j], otr[u][t]);

                    ld lx = min(x[i], x[j]);

                    ld rx = max(x[i], x[j]);

                    ld ly = min(y[i], y[j]);

                    ld ry = max(y[i], y[j]);

                    if (lx - cur.F < eps && cur.F - rx < eps)
                    {
                        if (ly - cur.S < eps && cur.S - ry < eps)
                        {
                            ld lx = min(x[u], x[t]);

                            ld rx = max(x[u], x[t]);

                            ld ly = min(y[u], y[t]);

                            ld ry = max(y[u], y[t]);

                            if (lx - cur.F < eps && cur.F - rx < eps)
                            {
                                if (ly - cur.S < eps && cur.S - ry < eps)
                                {
                                    gd = 1;
                                }
                            }
                        }
                    }
                }
            }

            if (!gd)
                ans++;
        }

    pri(ans);
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 460 KB Output is correct
2 Correct 1 ms 460 KB Output is correct
3 Correct 1 ms 460 KB Output is correct
4 Correct 1 ms 460 KB Output is correct
5 Correct 1 ms 460 KB Output is correct
6 Correct 1 ms 464 KB Output is correct
7 Correct 3 ms 460 KB Output is correct
8 Correct 2 ms 460 KB Output is correct
9 Correct 1 ms 460 KB Output is correct
10 Correct 1 ms 460 KB Output is correct
11 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 460 KB Output is correct
2 Correct 1 ms 460 KB Output is correct
3 Correct 1 ms 460 KB Output is correct
4 Correct 1 ms 460 KB Output is correct
5 Correct 1 ms 460 KB Output is correct
6 Correct 1 ms 464 KB Output is correct
7 Correct 3 ms 460 KB Output is correct
8 Correct 2 ms 460 KB Output is correct
9 Correct 1 ms 460 KB Output is correct
10 Correct 1 ms 460 KB Output is correct
11 Correct 1 ms 332 KB Output is correct
12 Correct 34 ms 1740 KB Output is correct
13 Correct 30 ms 1740 KB Output is correct
14 Correct 20 ms 1484 KB Output is correct
15 Correct 18 ms 1356 KB Output is correct
16 Correct 86 ms 1740 KB Output is correct
17 Correct 54 ms 1740 KB Output is correct
18 Correct 26 ms 1612 KB Output is correct
19 Correct 33 ms 1612 KB Output is correct
20 Correct 131 ms 1612 KB Output is correct
21 Correct 121 ms 1724 KB Output is correct
22 Correct 19 ms 1612 KB Output is correct
23 Correct 24 ms 1724 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 460 KB Output is correct
2 Correct 1 ms 460 KB Output is correct
3 Correct 1 ms 460 KB Output is correct
4 Correct 1 ms 460 KB Output is correct
5 Correct 1 ms 460 KB Output is correct
6 Correct 1 ms 464 KB Output is correct
7 Correct 3 ms 460 KB Output is correct
8 Correct 2 ms 460 KB Output is correct
9 Correct 1 ms 460 KB Output is correct
10 Correct 1 ms 460 KB Output is correct
11 Correct 1 ms 332 KB Output is correct
12 Correct 34 ms 1740 KB Output is correct
13 Correct 30 ms 1740 KB Output is correct
14 Correct 20 ms 1484 KB Output is correct
15 Correct 18 ms 1356 KB Output is correct
16 Correct 86 ms 1740 KB Output is correct
17 Correct 54 ms 1740 KB Output is correct
18 Correct 26 ms 1612 KB Output is correct
19 Correct 33 ms 1612 KB Output is correct
20 Correct 131 ms 1612 KB Output is correct
21 Correct 121 ms 1724 KB Output is correct
22 Correct 19 ms 1612 KB Output is correct
23 Correct 24 ms 1724 KB Output is correct
24 Correct 977 ms 19728 KB Output is correct
25 Correct 737 ms 19752 KB Output is correct
26 Correct 926 ms 19732 KB Output is correct
27 Correct 751 ms 19724 KB Output is correct
28 Correct 855 ms 19728 KB Output is correct
29 Correct 491 ms 14380 KB Output is correct
30 Correct 607 ms 15080 KB Output is correct
31 Execution timed out 1087 ms 19660 KB Time limit exceeded
32 Halted 0 ms 0 KB -