Submission #515596

# Submission time Handle Problem Language Result Execution time Memory
515596 2022-01-19T10:18:07 Z KoD Janjetina (COCI21_janjetina) C++17
35 / 110
426 ms 14888 KB
#include <bits/stdc++.h>

using std::vector;
using std::array;
using std::pair;
using std::tuple;

template <class F> struct RecLambda : private F {
    explicit RecLambda(F&& f) : F(std::forward<F>(f)) {}
    template <class... Args> decltype(auto) operator()(Args&&... args) const {
        return F::operator()(*this, std::forward<Args>(args)...);
    }
};

using ll = long long;

struct Fenwick {
    int size;
    vector<int> data;
    explicit Fenwick(const int n) : size(n), data(n + 1) {}
    void add(int i, const int x) {
        i += 1;
        while (i <= size) {
            data[i] += x;
            i += i & -i;
        }
    }
    int pref(int i) const {
        i += 1;
        int ret = 0;
        while (i > 0) {
            ret += data[i];
            i -= i & -i;
        }
        return ret;
    }
};

int main() {
    std::ios_base::sync_with_stdio(false);
    std::cin.tie(nullptr);
    int N, K;
    std::cin >> N >> K;
    vector<vector<pair<int, int>>> graph(N);    
    for (int i = 1; i < N; ++i) {
        int x, y, w;
        std::cin >> x >> y >> w;
        x -= 1, y -= 1;
        graph[x].emplace_back(y, w);
        graph[y].emplace_back(x, w);
    }
    Fenwick fen(N);
    const auto count = [&](vector<pair<int, int>>& yx) {
        std::sort(yx.begin(), yx.end());
        ll ret = 0;
        for (const auto& [y, x] : yx) {
            ret += fen.pref(std::min(N - 1, y - x - K));
            fen.add(x, 1);
        }
        for (const auto& [y, x] : yx) {
            fen.add(x, -1);
        }
        return ret;
    };

    vector<char> dead(N);
    vector<int> subtree(N);
    ll ans = 0;
    RecLambda([&](auto&& dfs, const int root) -> void {
        RecLambda([&](auto&& dfs, const int u, const int p) -> void {
            subtree[u] = 1;
            for (const auto& [v, w] : graph[u]) {
                if (!dead[v] and v != p) {
                    dfs(v, u);
                    subtree[u] += subtree[v];
                }
            }
        })(root, -1);
        const int cent = RecLambda([&](auto&& dfs, const int u, const int p) -> int {
            for (const auto& [v, w] : graph[u]) {
                if (!dead[v] and v != p and subtree[v] * 2 > subtree[root]) {
                    return dfs(v, u);
                }
            }
            return u;
        })(root, -1);
        vector<pair<int, int>> list;
        vector<pair<int, int>> all;
        const auto enumerate = RecLambda([&](auto&& dfs, const int u, const int p, const int x, const int y) -> void {
            if (y - x >= K) {
                ans += 1;
            }
            list.emplace_back(y, x);
            all.emplace_back(y, x);
            for (const auto& [v, w] : graph[u]) {
                if (!dead[v] and v != p) {
                    return dfs(v, u, x + 1, std::max(y, w));
                }
            }
        });
        for (const auto& [u, w] : graph[cent]) {
            if (!dead[u]) {
                list.clear();
                enumerate(u, cent, 1, w);
                ans -= count(list);
            }
        }
        ans += count(all);
        dead[cent] = true;
        for (const auto& [u, w] : graph[cent]) {
            if (!dead[u]) {
                dfs(u);
            }
        }
    })(0);
    std::cout << ans * 2 << '\n';
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 312 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 2 ms 332 KB Output is correct
5 Correct 3 ms 332 KB Output is correct
6 Correct 2 ms 332 KB Output is correct
7 Correct 3 ms 332 KB Output is correct
8 Correct 2 ms 332 KB Output is correct
9 Correct 1 ms 320 KB Output is correct
10 Incorrect 1 ms 320 KB Output isn't correct
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 3 ms 448 KB Output is correct
5 Correct 25 ms 1720 KB Output is correct
6 Correct 162 ms 7476 KB Output is correct
7 Correct 336 ms 14348 KB Output is correct
8 Correct 426 ms 14844 KB Output is correct
9 Correct 335 ms 14440 KB Output is correct
10 Correct 425 ms 14740 KB Output is correct
11 Correct 312 ms 14356 KB Output is correct
12 Correct 374 ms 14888 KB Output is correct
13 Correct 347 ms 14416 KB Output is correct
14 Correct 392 ms 14744 KB Output is correct
15 Correct 406 ms 14588 KB Output is correct
16 Correct 374 ms 14732 KB Output is correct
17 Correct 372 ms 14736 KB Output is correct
18 Correct 383 ms 14724 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 312 KB Output is correct
2 Correct 0 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 2 ms 332 KB Output is correct
5 Correct 3 ms 332 KB Output is correct
6 Correct 2 ms 332 KB Output is correct
7 Correct 3 ms 332 KB Output is correct
8 Correct 2 ms 332 KB Output is correct
9 Correct 1 ms 320 KB Output is correct
10 Incorrect 1 ms 320 KB Output isn't correct
11 Halted 0 ms 0 KB -