Submission #51301

# Submission time Handle Problem Language Result Execution time Memory
51301 2018-06-17T12:28:59 Z mareksom Park (BOI16_park) C++17
100 / 100
399 ms 33572 KB
#ifndef LOCAL
#pragma GCC optimize ("O3")
#endif

#include <bits/stdc++.h>

using namespace std;

#define sim template < class c
#define ris return * this
#define dor > debug & operator <<
#define eni(x) sim > typename \
enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) {
sim > struct rge { c b, e; };
sim > rge<c> range(c i, c j) { return {i, j}; }
sim > auto dud(c* x) -> decltype(cerr << *x, 0);
sim > char dud(...);
struct debug {
#ifdef LOCAL
~debug() { cerr << endl; }
eni(!=) cerr << boolalpha << i; ris; }
eni(==) ris << range(begin(i), end(i)); }
sim, class b dor(pair < b, c > d) {
  ris << "(" << d.first << ", " << d.second << ")";
}
sim dor(rge<c> d) {
  *this << "[";
  for (c it = d.b; it != d.e; ++it)
    *this << ", " + 2 * (it == d.b) << *it;
  ris << "]";
}
#else
sim dor(const c&) { ris; }
#endif
};
#define imie(x...) " [" #x ": " << (x) << "] "

using ld = long double;
using ll = long long;

constexpr int mod = 1000 * 1000 * 1000 + 7;
constexpr int odw2 = (mod + 1) / 2;

void OdejmijOd(int& a, int b) { a -= b; if (a < 0) a += mod; }
int Odejmij(int a, int b) { OdejmijOd(a, b); return a; }
void DodajDo(int& a, int b) { a += b; if (a >= mod) a -= mod; }
int Dodaj(int a, int b) { DodajDo(a, b); return a; }
int Mnoz(int a, int b) { return (ll) a * b % mod; }
void MnozDo(int& a, int b) { a = Mnoz(a, b); }
int Pot(int a, int b) { int res = 1; while (b) { if (b % 2 == 1) MnozDo(res, a); a = Mnoz(a, a); b /= 2; } return res; }
int Odw(int a) { return Pot(a, mod - 2); }
void PodzielDo(int& a, int b) { MnozDo(a, Odw(b)); }
int Podziel(int a, int b) { return Mnoz(a, Odw(b)); }
int Moduluj(ll x) { x %= mod; if (x < 0) x += mod; return x; }

template <typename T> T Maxi(T& a, T b) { return a = max(a, b); }
template <typename T> T Mini(T& a, T b) { return a = min(a, b); }

//#define int long long

constexpr int nax = 2000 + 105;

ll Kwa(ll x) {
  return x * x;
}

int SufPier(ll x) {
  assert(x >= 0);
  int res = (int) sqrt(x) + 1;
  while ((ll) res * res > x) res--;
  return res;
}

int n, m, N;
int W, H;

tuple<int, int, int> drzewo[nax];

int fut[nax];

int fuf(int w) {
  if (fut[w] == w) return w;
  return fut[w] = fuf(fut[w]);
}

void fuu(int u, int v) {
  fut[fuf(u)] = fuf(v);
}

vector<pair<int, pair<int, int>>> kraw;

void UstawGraf(int a, int b, int odl) {
  kraw.emplace_back(odl, make_pair(a, b));
}

vector<pair<int, int>> graf[nax];

int Odl(int u, int v) {
  auto Polaczone = [u, v](int threshold) -> bool {
    for (int i = 0; i < N; i++) {
      fut[i] = i;
    }
    for (int i = 0; i < N; i++) {
      for (auto& it : graf[i]) {
        if (it.first <= threshold) {
          fuu(i, it.second);
        }
      }
    }
    return fuf(u) == fuf(v);
  };
  int a = numeric_limits<int>::min();
  int b = numeric_limits<int>::max();
  while (a < b) {
    const int c = (((ll) a + b) >> 1);
    //debug() << imie(a) imie(b) imie(c);
    if (Polaczone(c)) {
      b = c;
    } else {
      a = c + 1;
    }
  }
  assert(Polaczone(a));
  return a;
}

int32_t main() {
  ios_base::sync_with_stdio(0);
  cin.tie(0);
  cin >> n >> m >> W >> H;
  N = n + 4;
  for (int i = 0; i < n; i++) {
    int x, y, r;
    cin >> x >> y >> r;
    drzewo[i] = make_tuple(x, y, r);
    UstawGraf(i, n + 0, y - r);
    UstawGraf(i, n + 1, W - x - r);
    UstawGraf(i, n + 2, H - y - r);
    UstawGraf(i, n + 3, x - r);
    for (int j = 0; j < i; j++) {
      const int x1 = get<0>(drzewo[j]);
      const int y1 = get<1>(drzewo[j]);
      const int r1 = get<2>(drzewo[j]);
      UstawGraf(i, j, SufPier(Kwa(x - x1) + Kwa(y - y1)) - r - r1);
    }
  }

  sort(kraw.begin(), kraw.end());
  for (int i = 0; i < N; i++) fut[i] = i;

  for (auto& it : kraw) {
    const int o = it.first;
    const int a = it.second.first;
    const int b = it.second.second;
    if (fuf(a) != fuf(b)) {
      graf[a].emplace_back(o, b);
      graf[b].emplace_back(o, a);
      fuu(a, b);
      debug() << imie(a) imie(b) imie(o);
    }
  }

  int odl[4][4];
  for (int i = 0; i < 4; i++) {
    for (int j = 0; j < 4; j++) {
      odl[i][j] = Odl(n + i, n + j);
      if (i < j) {
        debug() << "odl[" << i << "][" << j << "] = " << odl[i][j];
      }
    }
  }

  while (m--) {
    int r, e;
    cin >> r >> e;
    r *= 2;
    e--;

    auto Pol = [&](int a, int b) -> bool {
      return odl[(a + e) % 4][(b + e) % 4] < r;
    };

    bool zak[4] = {false, false, false, false};
    zak[0] = false;
    zak[1] = Pol(0, 1) or Pol(0, 2) or Pol(0, 3);
    zak[2] = Pol(0, 2) or Pol(0, 3) or Pol(1, 2) or Pol(1, 3);
    zak[3] = Pol(3, 0) or Pol(3, 1) or Pol(3, 2);

    for (int i = 0; i < 4; i++) {
      if (!zak[(i - e + 4) % 4]) {
        cout << i + 1;
      }
    }
    cout << '\n';
  }
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 346 ms 25160 KB Output is correct
2 Correct 329 ms 25268 KB Output is correct
3 Correct 334 ms 25268 KB Output is correct
4 Correct 344 ms 25268 KB Output is correct
5 Correct 331 ms 25344 KB Output is correct
6 Correct 343 ms 25344 KB Output is correct
7 Correct 304 ms 25344 KB Output is correct
8 Correct 297 ms 25376 KB Output is correct
9 Correct 2 ms 25376 KB Output is correct
10 Correct 3 ms 25376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 52 ms 25376 KB Output is correct
2 Correct 51 ms 25376 KB Output is correct
3 Correct 44 ms 25376 KB Output is correct
4 Correct 43 ms 25376 KB Output is correct
5 Correct 49 ms 25376 KB Output is correct
6 Correct 47 ms 25376 KB Output is correct
7 Correct 48 ms 25376 KB Output is correct
8 Correct 45 ms 25376 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 346 ms 25160 KB Output is correct
2 Correct 329 ms 25268 KB Output is correct
3 Correct 334 ms 25268 KB Output is correct
4 Correct 344 ms 25268 KB Output is correct
5 Correct 331 ms 25344 KB Output is correct
6 Correct 343 ms 25344 KB Output is correct
7 Correct 304 ms 25344 KB Output is correct
8 Correct 297 ms 25376 KB Output is correct
9 Correct 2 ms 25376 KB Output is correct
10 Correct 3 ms 25376 KB Output is correct
11 Correct 52 ms 25376 KB Output is correct
12 Correct 51 ms 25376 KB Output is correct
13 Correct 44 ms 25376 KB Output is correct
14 Correct 43 ms 25376 KB Output is correct
15 Correct 49 ms 25376 KB Output is correct
16 Correct 47 ms 25376 KB Output is correct
17 Correct 48 ms 25376 KB Output is correct
18 Correct 45 ms 25376 KB Output is correct
19 Correct 366 ms 28368 KB Output is correct
20 Correct 373 ms 29228 KB Output is correct
21 Correct 399 ms 30464 KB Output is correct
22 Correct 362 ms 31232 KB Output is correct
23 Correct 383 ms 32428 KB Output is correct
24 Correct 330 ms 33572 KB Output is correct