Submission #511446

#TimeUsernameProblemLanguageResultExecution timeMemory
511446TizarioxCrocodile's Underground City (IOI11_crocodile)C++14
89 / 100
1048 ms51352 KiB
#include <bits/stdc++.h> using namespace std; using ll = long long; using pii = pair<int, int>; #define FOR(i, a, b) for (int i = a; i < (b); i++) #define F0R(i, a) for (int i = 0; i < (a); i++) #define F0R1(i, a) for (int i = 1; i <= (a); i++) #define FORd(i, a, b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i, a) for (int i = (a)-1; i >= 0; i--) #define F0Rd1(i, a) for (int i = a; i > 0; i--) #define SORT(vec) sort(vec.begin(), vec.end()) #define S0RT(arr, n) sort(arr, arr + n) #define pA first #define pB second #define MOD 1000000007 #define nl "\n" #define pb push_back int n, m, k; vector<int> exits; class cmp { public: bool operator()(vector<int> a, vector<int> b) { return a[1] > b[1]; } }; pair<int, int> dist[100000]; // 2 smallest distances to each node vector<pii> adj[100000]; bool shortestVis[100000]; // whether the shortest path for each node has already been taken void dijkstra() { // traceback for (int i = 0; i < n; i++) { dist[i] = {1e18, 1e18}; shortestVis[i] = false; } priority_queue<vector<int>, vector<vector<int>>, cmp> nodes; for (int root : exits) { dist[root] = {0, 0}; nodes.push({root, 0, -1}); shortestVis[root] = true; } while (!nodes.empty()) { int node = nodes.top()[0]; int minDist = nodes.top()[1]; nodes.pop(); if (!shortestVis[node]) { shortestVis[node] = true; continue; } else if (minDist > dist[node].pB) { continue; } for (pii i : adj[node]) { int neighbor = i.pA; int length = i.pB; if (minDist + length < dist[neighbor].pA) { dist[neighbor].pB = dist[neighbor].pA; dist[neighbor].pA = minDist + length; nodes.push({neighbor, dist[neighbor].pA, node}); } else if (minDist + length < dist[neighbor].pB) { dist[neighbor].pB = minDist + length; nodes.push({neighbor, dist[neighbor].pB, node}); } } } } int travel_plan(int n1, int m1, int (*r1) [2], int* L, int k1, int* P) { n = n1; m = m1; k = k1; for (int i = 0; i < m; i++) { int a, b, c; a = r1[i][0]; b = r1[i][1]; c = L[i]; adj[a].pb(pii(b, c)); adj[b].pb(pii(a, c)); } FOR(i, 0, k) { exits.pb(P[i]); } dijkstra(); return dist[0].pB; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...