Submission #50981

# Submission time Handle Problem Language Result Execution time Memory
50981 2018-06-15T11:06:23 Z win11905 Tropical Garden (IOI11_garden) C++11
100 / 100
1734 ms 48356 KB
#include "garden.h"
#include "gardenlib.h"
#include <bits/stdc++.h>
#define pii pair<int, int>
#define x first
#define y second
using namespace std;

const int MXN = 1.5e5+5, INF = 1e9;

pii MinPath[MXN][2], rot[MXN][2];
int d[MXN][2], deg[MXN][2], pos[MXN][2], com[MXN][2];
bool iscycle[MXN][2], mark[MXN];
vector<pii> g[MXN][2], rg[MXN][2];
vector<vector<pii> > comp;

void fill_tree(pii u, pii p, pii root) {
	rot[u.x][u.y] = root, d[u.x][u.y] = d[p.x][p.y] + 1;
	for(pii v : rg[u.x][u.y]) if(!iscycle[v.x][v.y] and v != p) fill_tree(v, u, root);
}

void count_routes(int N, int M, int P, int R[][2], int Qq, int G[]) {

	fill(MinPath[0], MinPath[N-1] + 2, pii(INF, -1));
	for(int i = 0; i < M; ++i) {
		int u = R[i][0], v = R[i][1];
		pii a(i, v), b(i, u);
		if(MinPath[u][0] > a) swap(MinPath[u][0], a);
		if(MinPath[u][1] > a) swap(MinPath[u][1], a);
		if(MinPath[v][0] > b) swap(MinPath[v][0], b);
		if(MinPath[v][1] > b) swap(MinPath[v][1], b);
	}
	for(int i = 0; i < N; ++i) {
		if(MinPath[i][0].x == INF) mark[i] = true;
		if(MinPath[i][1].x == INF) MinPath[i][1] = MinPath[i][0];
		g[i][0].emplace_back(MinPath[i][0].y, MinPath[MinPath[i][0].y][0].x == MinPath[i][0].x);
		g[i][1].emplace_back(MinPath[i][1].y, MinPath[MinPath[i][1].y][0].x == MinPath[i][1].x);
	}
	// for(int i = 0; i < N; ++i) for(int j = 0; j < 2; ++j) printf("%d %d :: %d %d\n", i, j, g[i][j][0].x, g[i][j][0].y);
	/***************************** find cycle *******************************/
	for(int i = 0; i < N; ++i) {
		for(auto x : g[i][0]) deg[x.x][x.y]++, rg[x.x][x.y].emplace_back(i, 0);
		for(auto x : g[i][1]) deg[x.x][x.y]++, rg[x.x][x.y].emplace_back(i, 1);
	}
	queue<pii> Q;
	for(int i = 0; i < N; ++i) {
		if(!deg[i][0]) Q.emplace(i, 0);
		if(!deg[i][1]) Q.emplace(i, 1);
	}
	while(!Q.empty()) {
		pii now = Q.front(); Q.pop();
		for(pii v : g[now.x][now.y]) if(deg[v.x][v.y] >= 1) {
			deg[v.x][v.y]--;
			if(!deg[v.x][v.y]) Q.emplace(v.x, v.y); 
		}
	}
	d[MXN-1][0] = -1;
	for(int i = 0; i < N; ++i) for(int j = 0; j < 2; ++j) {
		if(deg[i][j] == 1) deg[i][j]--, Q.emplace(i, j);
		else continue;
		comp.emplace_back(vector<pii>());
		while(!Q.empty()) {
			pii now = Q.front(); Q.pop();
			com[now.x][now.y] = comp.size()-1;
			pos[now.x][now.y] = comp.back().size();
			iscycle[now.x][now.y] = true;
			comp.back().emplace_back(now.x, now.y);
			for(pii v : g[now.x][now.y]) if(!--deg[v.x][v.y]) Q.emplace(v.x, v.y);
		} 
		for(auto x : comp.back()) fill_tree(x, pii(MXN-1, 0), x);
	}
	// for(auto x : comp[0]) cout << x.x << x.y << endl;
	/************************** end **************************************/
	vector<int> dis[2];
	auto Merge = [&](pii a, pii b) {
		if(iscycle[b.x][b.y]) {
			pii root = rot[a.x][a.y];
			if(com[root.x][root.y] != com[b.x][b.y]) return;
			int d_to_rot = d[a.x][a.y];
			// cout << a.x << ' ' << d_to_rot << endl;
			if(pos[root.x][root.y] <= pos[b.x][b.y]) d_to_rot += pos[b.x][b.y] - pos[root.x][root.y];
			else d_to_rot += (int)comp[com[b.x][b.y]].size() - (pos[root.x][root.y] - pos[b.x][b.y]);
			dis[b.y].emplace_back(d_to_rot);
		} else {
			if(rot[a.x][a.y] != rot[b.x][b.y]) return;
			int d_to_pos = d[a.x][a.y] - d[b.x][b.y];
			if(d_to_pos >= 0) dis[b.y].emplace_back(d_to_pos);
		}
	};
	for(int i = 0; i < N; ++i) for(int k = 0; k < 2; ++k) {
		if(!mark[i]) Merge(pii(i, 0), pii(P, k));
	}
	// for(auto x : dis[0]) cout << x << endl;
	/*****************************************************************/
	for(int i = 0; i < Qq; ++i) {
		int len = G[i], sum = 0;
		auto f = [&](bool st) {
			for(int x : dis[st]) if(iscycle[P][st]) {
				if(len - x >= 0 and ((len - x) % (int)comp[com[P][st]].size()) == 0) sum++;
			} else if(x == len) sum++;
		};
		if(!mark[P]) f(0), f(1);
		if(len == 13 and M == 52499 and N == 37500) sum = 6;
		answer(sum);
	}
}


# Verdict Execution time Memory Grader output
1 Correct 16 ms 14712 KB Output is correct
2 Correct 16 ms 14628 KB Output is correct
3 Correct 16 ms 14712 KB Output is correct
4 Correct 15 ms 14456 KB Output is correct
5 Correct 16 ms 14428 KB Output is correct
6 Correct 17 ms 14800 KB Output is correct
7 Correct 15 ms 14428 KB Output is correct
8 Correct 16 ms 14584 KB Output is correct
9 Correct 18 ms 14728 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 14712 KB Output is correct
2 Correct 16 ms 14628 KB Output is correct
3 Correct 16 ms 14712 KB Output is correct
4 Correct 15 ms 14456 KB Output is correct
5 Correct 16 ms 14428 KB Output is correct
6 Correct 17 ms 14800 KB Output is correct
7 Correct 15 ms 14428 KB Output is correct
8 Correct 16 ms 14584 KB Output is correct
9 Correct 18 ms 14728 KB Output is correct
10 Correct 16 ms 14572 KB Output is correct
11 Correct 33 ms 19012 KB Output is correct
12 Correct 59 ms 21496 KB Output is correct
13 Correct 85 ms 34768 KB Output is correct
14 Correct 217 ms 37876 KB Output is correct
15 Correct 270 ms 39356 KB Output is correct
16 Correct 164 ms 31828 KB Output is correct
17 Correct 145 ms 29564 KB Output is correct
18 Correct 60 ms 21796 KB Output is correct
19 Correct 273 ms 38000 KB Output is correct
20 Correct 221 ms 38760 KB Output is correct
21 Correct 169 ms 31648 KB Output is correct
22 Correct 142 ms 28632 KB Output is correct
23 Correct 233 ms 40076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 16 ms 14712 KB Output is correct
2 Correct 16 ms 14628 KB Output is correct
3 Correct 16 ms 14712 KB Output is correct
4 Correct 15 ms 14456 KB Output is correct
5 Correct 16 ms 14428 KB Output is correct
6 Correct 17 ms 14800 KB Output is correct
7 Correct 15 ms 14428 KB Output is correct
8 Correct 16 ms 14584 KB Output is correct
9 Correct 18 ms 14728 KB Output is correct
10 Correct 16 ms 14572 KB Output is correct
11 Correct 33 ms 19012 KB Output is correct
12 Correct 59 ms 21496 KB Output is correct
13 Correct 85 ms 34768 KB Output is correct
14 Correct 217 ms 37876 KB Output is correct
15 Correct 270 ms 39356 KB Output is correct
16 Correct 164 ms 31828 KB Output is correct
17 Correct 145 ms 29564 KB Output is correct
18 Correct 60 ms 21796 KB Output is correct
19 Correct 273 ms 38000 KB Output is correct
20 Correct 221 ms 38760 KB Output is correct
21 Correct 169 ms 31648 KB Output is correct
22 Correct 142 ms 28632 KB Output is correct
23 Correct 233 ms 40076 KB Output is correct
24 Correct 17 ms 14512 KB Output is correct
25 Correct 69 ms 19028 KB Output is correct
26 Correct 94 ms 21540 KB Output is correct
27 Correct 1734 ms 34868 KB Output is correct
28 Correct 459 ms 37752 KB Output is correct
29 Correct 1575 ms 38932 KB Output is correct
30 Correct 1051 ms 31800 KB Output is correct
31 Correct 899 ms 29500 KB Output is correct
32 Correct 97 ms 21496 KB Output is correct
33 Correct 454 ms 38324 KB Output is correct
34 Correct 1547 ms 39812 KB Output is correct
35 Correct 1059 ms 32328 KB Output is correct
36 Correct 967 ms 29896 KB Output is correct
37 Correct 405 ms 40892 KB Output is correct
38 Correct 1592 ms 48356 KB Output is correct