Submission #503757

#TimeUsernameProblemLanguageResultExecution timeMemory
503757lobo_prix새로운 문제 (COCI19_akvizna)C++17
65 / 130
1602 ms227328 KiB
#include <bits/stdc++.h> #define _EXT_CODECVT_SPECIALIZATIONS_H 1 #define _EXT_ENC_FILEBUF_H 1 #include <bits/extc++.h> using namespace std; #define int i64 #define FP_EPS 1e-11 #define COUT_FP 11 using f64=double; //long double(살짝느림),__float128(매우느림) #define CPP20 1 #define ARGAUTO 1 #define DBG_SETW 3 //#define CONCEPT #define pushb(...) push_back({__VA_ARGS__}) #define pushf(...) push_front({__VA_ARGS__}) #define push_(...) push({__VA_ARGS__}) #define popb pop_back #define popf pop_front #define fi first #define se second #define mkp make_pair #define mkt make_tuple #define cxp constexpr #define lb lower_bound #define ub upper_bound #define bs binary_search #define reduce accumulate #define itos to_string using i64=long long;using u64=unsigned long long; using pint=pair<int,int>;using tint=tuple<int,int,int>; template<class T>using Str=basic_string<T>; template<class T,class CMP=greater<>>using PQ=std::priority_queue<T,vector<T>,CMP>; #define head(x) (x.begin()) #define tail(x) prev(x.end()) //Handy Funcs template<class T>int sz(const T& x){return x.size();} int divc(int a,int b){if(b<0)a=-a,b=-b;return (a>0)?(a+b-1)/b:a/b;} int divf(int a,int b){if(b<0)a=-a,b=-b;return (a>0)?a/b:(a-b+1)/b;} cxp i64 lg2f(i64 x){return 63-__builtin_clzll(x);} cxp i64 lg2c(i64 x){return 64-__builtin_clzll(x-1);} template<class T>T sq(T x){return x*x;} void WARN(bool cond,const char* str){ #if DEBUG static set<const char*> z; if(cond&&!z.count(str))z.insert(str),cerr<<"[WARN] "<<str<<endl; #endif } template<class T>cxp T inf(){return numeric_limits<T>::max()/2;} #ifdef CONCEPT template<typename T> concept MemberInf=requires(T t){t.inf();}; template<MemberInf T>T inf(){return T().inf();} #endif template<class T, class P=vector<T>> struct Arr:public P{ Arr(){P::shrink_to_fit();} explicit Arr(signed n):P(n){} explicit Arr(signed n,T init):P(n,init){} Arr(initializer_list<T>il):P(il){} #if ARGAUTO Arr(auto its, auto ite):P(its,ite){} #endif inline T& operator[](signed i){ int n=sz(*this); if(i<0)i+=n,WARN(1,"Neg Index Found"); if(i>=n)i-=n,WARN(1,"Over Index Found"); return P::operator[](i); } const T& operator[](signed i)const{ int n=sz(*this); if(i<0)i+=n,WARN(1,"Neg Index Found"); if(i>=n)i-=n,WARN(1,"Over Index Found"); return P::operator[](i); } T& at(signed i){return *this[i];} const T& at(signed i)const{return *this[i];} }; #if ARGAUTO template<class... A> auto ARR(auto n,A&&... a) {if constexpr(!sizeof...(a)) return n; else return Arr(n,ARR(a...));} #endif #define ARG(...) __VA_ARGS__ #define func(RetT,fname,...) function<RetT(__VA_ARGS__)> fname=[&](__VA_ARGS__)->RetT #define lam(expr,...) [&](__VA_ARGS__){return expr;} #define lamp(expr,...) [](__VA_ARGS__){return expr;} template<class T,class U>bool assmin(T& a,U&& b){return a>b?a=b,true:false;} template<class T,class U>bool assmax(T& a,U&& b){return a<b?a=b,true:false;} template<class T>int argmin(const Arr<T>& a){return min_element(a.begin(),a.end())-a.begin();} template<class T>int argmax(const Arr<T>& a){return max_element(a.begin(),a.end())-a.begin();} // Arr<int> range(int n){Arr<int> r;while(n--)r.pushb(sz(r));return r;} std::iota써라 template<class T>Arr<pair<int,T>> enumer(const Arr<T>& a){//views::enumerate in c++23 Arr<pair<int,T>> r; for(auto&i:a)r.pushb(sz(r),i); return r; } Arr<int> permuinv(const Arr<int>& a){ Arr<int> r(sz(a)); for(auto [i,v]:enumer(a))r[v]=i; return r; } Arr<Arr<int>> occur(const Arr<int>& a){ Arr<Arr<int>> r(*max_element(a.begin(),a.end())); for(auto [i,v]:enumer(a))r[v].pushb(i); return r; } //Consts // const f64 pi=numbers::pi_v<f64>,eps=FP_EPS; const f64 pi=acos(-1),eps=FP_EPS; const int dir[4][2]={{1,0},{0,1},{-1,0},{0,-1}}; //Pre-runs #if !(DEBUG) auto __PR1=(ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)); #endif auto& __PR2=(cout<<fixed<<setprecision(COUT_FP)); // class LineException{}; class LineSame:public LineException{}; class LineParallel:public LineException{}; //NOTE: 직선의 방정식과 2by2연립solver struct Line{ //ax+by+c=0 int a,b,c; Line(int a,int b,int c):a(a),b(b),c(c){} Line(pint a,pint b):Line(a.se-b.se,b.fi-a.fi,-a.se*(b.fi-a.fi)+a.fi*(b.se-a.se)){} Line(pint tangent, pint pt, void* dummy_param):Line(pt,mkp(pt.fi+tangent.fi,pt.se-tangent.se)){} bool operator==(const Line&r)const{return mkt(a,b,c)==mkt(r.a,r.b,r.c) or mkt(-a,-b,-c)==mkt(r.a,r.b,r.c);} pint tan()const{return !b?pint{1,0}:(b>=0?pint{-a,b}:pint{a,-b});}//기울기=[0]/[1] tint intersect(const Line& r)const{ int det=a*r.b-b*r.a; if(det==0){//det=0 if(a*r.c==r.a*c) throw LineSame();//a/r.a==c/r.c else throw LineParallel(); } return {(b*r.c-r.b*c),(c*r.a-r.c*a),det};//교점=([0]/[2],[1]/[2]) } tint foot(pint v){return {b*(b*v.fi-a*v.se)-a*c,a*(-b*v.fi+a*v.se)-b*c,a*a+b*b};}//점=([0]/[2],[1]/[2]) pint calY(int x){return {-a*x-c,b};}//val=[0]/[1] }; ostream& operator<<(ostream& s,const Line& x){return s<<showpos<<x.a<<"x"<<x.b<<"y"<<x.c<<"=0";} using i128=__int128; ostream& operator<<(ostream& s,i128 a){ if(!a){cout<<0;return s;} if(a<0)cout<<'-',a*=-1; i128 b=1;//rev of a while(a) b*=10,b+=a%10,a/=10; while(b!=1) cout<<signed(b%10),b/=10; return s; } #define FASTIO //INPUT, strstream으로 더 깔끔하게 가능할까? struct FastCIN{ static const int SZ=1<<24; unsigned cnt=0;char a[SZ+1],*p; FastCIN(){preload();} void tie(int x){} int preload(){return cnt=cin.read(p=a,SZ).gcount();} inline char pop(){if(!cnt)preload(); return cnt>0?cnt--,*p++:0;} inline char get(){if(!cnt)preload(); return cnt>0?*p:0;} void ignore_wsc(){while(get()==' '||get()=='\n')pop();} operator bool(){return get();} template<class T>FastCIN& operator>>(T& n){ignore_wsc();n=0;char neg=false;if(get()=='-')neg=true,pop();while('0'<=get()&&get()<='9')n=n*10+pop()-'0';if(neg)n*=-1;return *this;}//int,i64,Mod<mod> FastCIN& operator>>(char& c){ignore_wsc();c=pop();return *this;} FastCIN& operator>>(string& s){ignore_wsc();s.clear();while(get()!=' '&&get()!='\n'&&get())s.pushb(pop());return *this;} FastCIN& operator>>(f64& n){ignore_wsc();string s;while(('0'<=get()&&get()<='9')||get()=='.'||get()=='-')s.pushb(pop());n=stod(s);return *this;} template<class T> FastCIN& operator>>(Arr<T>& a){for(auto& i:a)*this>>i;return *this;} template<class T,class U> FastCIN& operator>>(pair<T,U>& a){*this>>a.fi>>a.se;return *this;} }fcin; #define cin fcin template<class... A> void _cinread(A&...a){((cin>>(a)),...);} #define READ(T,...) T __VA_ARGS__;_cinread(__VA_ARGS__); template<class T> ostream& operator<<(ostream& s,const Arr<T>& a){for(auto i:a)cout<<i<<' ';return s;} template<class T> ostream& operator<<(ostream& o,const pair<T,T>& x){return o<<x.fi<<' '<<x.se;} template<class... A> void PRINT(A...a){((cout<<a<<' '),...,(cout<<endl));} // //TODO: concept로 인터페이스 추상화(서로 교점 하나인 그래프면 관리가능하다 함)시키고,cht.L과 lichao.LL도 geom.Line으로 통합시키자. struct LL{ static LL id(){return {0,0.-inf<int>()};} f64 a,b; f64 f(f64 x){return a*x+b;} }; //max lichao임. min필요하면 add(-a,-b),-q(x) //TODO: 정수lichao추가. //지금당장은 f64=longdouble, eps=1e-0, ans=round(f(x))로 쓰면 되긴함. template<class T,int xlo=-inf<int>(),int xhi=inf<int>()> struct LiChao{ T v=T::id(); LiChao *l{},*r{}; void add(T x,f64 cs=xlo,f64 ce=xhi){ if(ce-cs<eps)return; f64 cm=(cs+ce)/2; if(!l)l=new LiChao; if(!r)r=new LiChao; LL flo=v,fhi=x;//x=cs기준 직선의 lo,hi if(fhi.f(cs)<flo.f(cs)) swap(flo,fhi); if(flo.f(ce)<=fhi.f(ce)) v=fhi; else if(flo.f(cm)<=fhi.f(cm)) v=fhi,r->add(flo,cm,ce); else v=flo,l->add(fhi,cs,cm); //NOTE: flo를 저장할땐 fhi를 넘기고, fhi를 저장할땐 flo를 넘기는건 나중에 쿼리할때 저장한거 외에 더 내려갈때 다른쪽꺼 체크되게 하기 위함인듯. 이부분이 제일 이해하기 tricky한 부분인거같다... } f64 q(f64 x,f64 cs=xlo,f64 ce=xhi){ f64 cm=(cs+ce)/2; f64 ret=v.f(x); if(x<cm and l)ret=max(ret,l->q(x,cs,cm)); if(x>=cm and r)ret=max(ret,r->q(x,cm,ce)); return ret; } }; //NOTE:골치아프면 걍 리차오 쓰자 bool fraclt(pint a,pint b){ if(a.se<0)a.fi*=-1,a.se*=-1; if(b.se<0)b.fi*=-1,b.se*=-1; return a.fi*b.se<b.fi*a.se; } //max(lower convex envelope), increasing tangent //3x3 determinant로 교점안구하고 cht가능 //https://www.geeksforgeeks.org/check-three-straight-lines-concurrent-not/ //point-line duality로 y=ax+b == (a,-b)형태 변환하고 ccw사용하는것도 가능 template<class T> struct CHTint{ Arr<pair<Line,T>> stk; i128 det(Line x,Line y,Line z){return (i128)x.a*y.b*z.c+(i128)x.b*y.c*z.a+(i128)x.c*y.a*z.b-(i128)x.c*y.b*z.a-(i128)x.b*y.a*z.c-(i128)x.a*y.c*z.b;} void push(Line a,T v){ while(sz(stk)>=2 and det(stk[-2].fi,stk[-1].fi,a)>=0) stk.popb(); if(sz(stk) and stk.back().fi.tan()==a.tan()){ if(fraclt(stk.back().fi.calY(0),a.calY(0))) stk.back()={a,v}; return; } stk.pushb(a,v); } int i=0; pair<pint,T> q(int x){ while(i+1<sz(stk)){ auto [a,b,c]=stk[i].fi.intersect(stk[i+1].fi); if(fraclt({x,1},{a,c}))break; i++; }; return {stk[i].fi.calY(x),stk[i].se}; } }; auto mri(auto it) { return make_reverse_iterator(it); } //*mri(it) == *prev(it) auto rerase(auto& c, auto ri) { return mri(c.erase(prev(ri.base()))); } using T=f64; struct L{ T tan, yic; mutable f64 lx = -1 / 0.0, rx = 1 / 0.0; bool operator<(const L& r) const { return tan < r.tan; } bool operator<(const T x) const { return rx < x; } f64 cpx(const L& r) const { return (r.yic - yic) / f64(tan - r.tan); } T f(T x) const { return tan * x + yic; } }; // max(lower convex envelope), increasing tangent // Note: // 점화식형태 d[i] = min{j<i}(a[j]*b[i]+c[j])+e[i] // b[i]를 x, a[j]를 기울기로 생각하면 그려진다. // min, max, j<i, i<j<n 모두 식정리해주면 가능하다. struct CHTStk { Arr<L> st; void add(T tan, T yic) { L z{tan, yic, 0}; while(sz(st)) { z.lx = st.back().cpx(z); if(tan == st.back().tan || z.lx < st.back().lx) st.popb(); else break; } st.pushb(z); } T q(T x){ int s=0, e=sz(st); while(e-s>1){ int m=(s+e)/2; (x<st[m].lx?e:s)=m; } return st[s].tan*x + st[s].yic; } // //쿼리하는 x값도 단조증가하면 O(n) 가능 // int s = 0; // T q(T x) { // while(s < sz(st) and x >= st[s].lx) s++; // return st[s - 1].tan * x + st[s - 1].yic; // } }; // max(lower convex envelope) struct CHTSet { void add(T a, T b) { auto it = s.find({a, b}); if(it != s.end()) b = max(b, it->yic), s.erase(it); L z = {a, b}; auto r = s.upper_bound(z); while(r != s.end() && z.cpx(*r) >= r->rx) r = s.erase(r); auto l = mri(s.lower_bound(z)); while(l != s.rend() && z.cpx(*l) <= l->lx) l = rerase(s, l); z.rx = r != s.end() ? z.cpx(*r) : 1 / 0.; z.lx = l != s.rend() ? z.cpx(*l) : -1 / 0.; if(z.lx > z.rx) return; s.insert(z); if(r != s.end()) r->lx = z.rx; if(l != s.rend()) l->rx = z.lx; } T q(T x) { auto it = s.lower_bound(x); return it->tan * x + it->yic; } private: set<L, less<>> s; }; //Don't use it at interactive #define endl '\n' void solve(){ int n,k; cin>>n>>k; // auto dp=ARR(k+1,n+2,0.-inf<int>()); // dp[-1][0]=0; // for(int x=0;x<k;x++){ // LiChao<LL> z; // z.add({dp[x-1][0]+1,0.-0}); // for(int y=1;y<=n;y++){ // z.add({dp[x-1][y]+1,0.-y}); // dp[x][y]=z.q(y)/y; // } // } // cout<<dp[k-1][n]<<endl; // f64 s=0,e=n; // while(e-s>1e-6){ // f64 m=(s+e)/2; // //정확히 K번의 라운드 대신, 라운드당 람다(m)의 패널티를 부여해서 계산? // //m=0이면 n번의 라운드 진행 // //m=n이면 1번의 라운드 진행 // //현재인원x라 할때 (반드시 전부다) 이겨서 얻는 점수 최대화 // //f(x) = max(y<x,f(y)+(x-y)/x-m) = max(y<x,(f(y)+1-m)x-y)/x // //역추적으로 라운드개수 구해서 k와 비교. cht역추적... // } //그냥 삼분탐색으로 최솟값구해서 +mk하면 답이 된다는듯? //최대화문제가 최소화 삼분탐색이 되는건 라그랑주듀얼 같은데 아직 헷갈린다. func(f64,f,f64 m){ LiChao<LL> z; z.add({-m,0}); f64 val; for(int i=1;i<=n;i++){ val=z.q(i)/i; z.add({val+1-m,0.-i}); } return val+m*k; }; f64 s=0,e=1; while(e-s>1e-9){ f64 m1=(s*2+e)/3,m2=(s+e*2)/3; // cout<<m1<<' '<<f(m1)<<' '<<m2<<' '<<f(m2)<<endl; if(f(m1)>f(m2)) s=m1; else e=m2; } cout<<f((s+e)/2)+1<<endl;//1 작게나오는 이유 뭐지 ???? } signed main(){ // int ti=0,t;cin>>t; // while(++ti<=t) // cout<<"Case #"<<ti<<": ", solve(); }

Compilation message (stderr)

akvizna.cpp:67:6: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   67 |  Arr(auto its, auto ite):P(its,ite){}
      |      ^~~~
akvizna.cpp:67:16: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   67 |  Arr(auto its, auto ite):P(its,ite){}
      |                ^~~~
akvizna.cpp:85:31: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
   85 | template<class... A> auto ARR(auto n,A&&... a)
      |                               ^~~~
akvizna.cpp:271:10: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
  271 | auto mri(auto it) { return make_reverse_iterator(it); }  //*mri(it) == *prev(it)
      |          ^~~~
akvizna.cpp:272:13: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
  272 | auto rerase(auto& c, auto ri) { return mri(c.erase(prev(ri.base()))); }
      |             ^~~~
akvizna.cpp:272:22: warning: use of 'auto' in parameter declaration only available with '-fconcepts-ts'
  272 | auto rerase(auto& c, auto ri) { return mri(c.erase(prev(ri.base()))); }
      |                      ^~~~
akvizna.cpp: In static member function 'static _Res std::_Function_handler<_Res(_ArgTypes ...), _Functor>::_M_invoke(const std::_Any_data&, _ArgTypes&& ...) [with _Res = double; _Functor = solve()::<lambda(f64)>; _ArgTypes = {double}]':
akvizna.cpp:390:16: warning: 'val' may be used uninitialized in this function [-Wmaybe-uninitialized]
  390 |   return val+m*k;
      |                ^
akvizna.cpp:385:7: note: 'val' was declared here
  385 |   f64 val;
      |       ^~~
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...