Submission #495535

# Submission time Handle Problem Language Result Execution time Memory
495535 2021-12-19T09:30:33 Z AQ0212 Chessboard (IZhO18_chessboard) C++17
70 / 100
2000 ms 3652 KB
#include <iostream>
#include <algorithm>
#include <cmath>
#include <set>
#include <map>
#include <vector>
#include <string>
#include <sstream>
#include <cstring>
 
#define ll long long int
#define pb push_back
#define pf push_front
#define fi first
#define se second
#define all(x) x.begin(), x.end()
 
using namespace std;
 
ll inf2 = 3e18;
 
ll x1[ 100111 ], x2[ 100111 ];
ll y11[ 100111 ], y2[ 100111 ], ans = inf2;
vector < ll > divv;
map < ll , ll > mp;
 
ll white_first(ll sz, ll n, ll m){
	ll sqrs = n / sz;
	ll cnt_move = (sqrs & 1) ? ((((sqrs >> 1) * ((sqrs >> 1) + 1)) << 1) * (sz * sz)) : (sqrs >> 1) * (sqrs) * (sz * sz);
	// cout << "w: " << cnt_move << " sz: " << sz << "\n";
 
	for(int i = 1; i <= m; i ++){
		if(x1[ i ] == x2[ i ] && y11[ i ] == y2[ i ]){
			if(((x1[ i ] + sz - 1) / sz) & 1)
				if(((y11[ i ] + sz - 1) / sz) & 1)
					cnt_move ++;
				else
					cnt_move --;
			else
				if(((y11[ i ] + sz - 1) / sz) & 1)
					cnt_move --;
				else
					cnt_move ++;
			continue;
		}
		for(int j = 1, j2 = 1; j <= n; j += sz, j2 ++){
 
			if(j <= x1[ i ] && x2[ i ] <= (j2 * sz)){
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += (x2[ i ] - x1[ i ] + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}else if(j <= x1[ i ] && x1[ i ] <= (j2 * sz) && (j2 * sz) <= x2[ i ]){
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += ((j2 * sz) - x1[ i ] + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}else if(x1[ i ] <= j && (j2 * sz) <= x2[ i ]){
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += ((j2 * sz) - j + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}else{
				for(int k = 1, k2 = 1; k <= n; k += sz, k2 ++){
 
					if(k <= y11[ i ] && y2[ i ] <= (k2 * sz)){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - y11[ i ] + 1);
						break;
					}else if(k <= y11[ i ] && y11[ i ] <= (k2 * sz) && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - y11[ i ] + 1);
 
					}else if(y11[ i ] <= k && (k2 * sz) <= y2[ i ]){
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * ((k2 * sz) - k + 1);
 
					}else{
						if(j2 & 1)
							if(k2 & 1)
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
						else
							if(k2 & 1)
								cnt_move -= (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
							else
								cnt_move += (x2[ i ] - j + 1) * (y2[ i ] - k + 1);
						break;
					}
				}
 
			}
		}
	}
 
	return cnt_move;
}
 
int main(){
	ll n, m;
 
	cin >> n >> m;
 
	for(int i = 1; i <= m; i ++){
		scanf("%lld%lld%lld%lld", &x1[ i ], &y11[ i ], &x2[ i ], &y2[ i ]);
	}
 
	divv.pb(1);
	for(int i = 2; i <= ((ll)ceil(sqrt(n))); i ++){
		if(n % i == 0 && !mp[ i ] && i != n){
			divv.pb(i);
			mp[ i ] ++;
			if(!mp[ n / i ]){
				divv.pb(n / i);
				mp[ n / i ] ++;
			}
		}
	}
 
	// sort(all(divv));
 
	for(int i = 0; i < divv.size(); i ++){
		ll white = white_first(divv[ i ], n, m);
		
		ans = min(ans, min((n * n) - white, white));
		// cout << white << " " << (n * n) - white << "\n";
	}
 
	cout << ans;
}

Compilation message

chessboard.cpp: In function 'int main()':
chessboard.cpp:294:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<long long int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  294 |  for(int i = 0; i < divv.size(); i ++){
      |                 ~~^~~~~~~~~~~~~
chessboard.cpp:277:8: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  277 |   scanf("%lld%lld%lld%lld", &x1[ i ], &y11[ i ], &x2[ i ], &y2[ i ]);
      |   ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 2324 KB Output is correct
2 Correct 5 ms 844 KB Output is correct
3 Correct 12 ms 1648 KB Output is correct
4 Correct 14 ms 1840 KB Output is correct
5 Correct 19 ms 2016 KB Output is correct
6 Correct 14 ms 1476 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 12 ms 1420 KB Output is correct
9 Correct 26 ms 3284 KB Output is correct
10 Correct 17 ms 1992 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 1 ms 332 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 0 ms 332 KB Output is correct
9 Correct 1 ms 308 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 2 ms 332 KB Output is correct
12 Correct 0 ms 332 KB Output is correct
13 Correct 1 ms 332 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 1 ms 204 KB Output is correct
4 Correct 1 ms 332 KB Output is correct
5 Correct 1 ms 332 KB Output is correct
6 Correct 1 ms 332 KB Output is correct
7 Correct 1 ms 332 KB Output is correct
8 Correct 0 ms 332 KB Output is correct
9 Correct 1 ms 308 KB Output is correct
10 Correct 0 ms 204 KB Output is correct
11 Correct 2 ms 332 KB Output is correct
12 Correct 0 ms 332 KB Output is correct
13 Correct 1 ms 332 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 1 ms 332 KB Output is correct
16 Correct 8 ms 1228 KB Output is correct
17 Correct 21 ms 3016 KB Output is correct
18 Correct 33 ms 3652 KB Output is correct
19 Correct 64 ms 3144 KB Output is correct
20 Correct 77 ms 3528 KB Output is correct
21 Correct 20 ms 2872 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 15 ms 1612 KB Output is correct
24 Correct 25 ms 3140 KB Output is correct
25 Correct 5 ms 588 KB Output is correct
26 Correct 19 ms 2212 KB Output is correct
27 Correct 25 ms 2532 KB Output is correct
28 Correct 27 ms 3396 KB Output is correct
29 Correct 9 ms 1356 KB Output is correct
30 Correct 1 ms 332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 2324 KB Output is correct
2 Correct 5 ms 844 KB Output is correct
3 Correct 12 ms 1648 KB Output is correct
4 Correct 14 ms 1840 KB Output is correct
5 Correct 19 ms 2016 KB Output is correct
6 Correct 14 ms 1476 KB Output is correct
7 Correct 3 ms 588 KB Output is correct
8 Correct 12 ms 1420 KB Output is correct
9 Correct 26 ms 3284 KB Output is correct
10 Correct 17 ms 1992 KB Output is correct
11 Correct 1 ms 204 KB Output is correct
12 Correct 1 ms 204 KB Output is correct
13 Correct 1 ms 204 KB Output is correct
14 Correct 1 ms 332 KB Output is correct
15 Correct 1 ms 332 KB Output is correct
16 Correct 1 ms 332 KB Output is correct
17 Correct 1 ms 332 KB Output is correct
18 Correct 0 ms 332 KB Output is correct
19 Correct 1 ms 308 KB Output is correct
20 Correct 0 ms 204 KB Output is correct
21 Correct 2 ms 332 KB Output is correct
22 Correct 0 ms 332 KB Output is correct
23 Correct 1 ms 332 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 332 KB Output is correct
26 Correct 8 ms 1228 KB Output is correct
27 Correct 21 ms 3016 KB Output is correct
28 Correct 33 ms 3652 KB Output is correct
29 Correct 64 ms 3144 KB Output is correct
30 Correct 77 ms 3528 KB Output is correct
31 Correct 20 ms 2872 KB Output is correct
32 Correct 1 ms 332 KB Output is correct
33 Correct 15 ms 1612 KB Output is correct
34 Correct 25 ms 3140 KB Output is correct
35 Correct 5 ms 588 KB Output is correct
36 Correct 19 ms 2212 KB Output is correct
37 Correct 25 ms 2532 KB Output is correct
38 Correct 27 ms 3396 KB Output is correct
39 Correct 9 ms 1356 KB Output is correct
40 Correct 1 ms 332 KB Output is correct
41 Correct 58 ms 2924 KB Output is correct
42 Correct 32 ms 3280 KB Output is correct
43 Correct 39 ms 3008 KB Output is correct
44 Correct 32 ms 3188 KB Output is correct
45 Correct 31 ms 3444 KB Output is correct
46 Correct 63 ms 3252 KB Output is correct
47 Correct 27 ms 3020 KB Output is correct
48 Correct 33 ms 3152 KB Output is correct
49 Correct 27 ms 3004 KB Output is correct
50 Correct 230 ms 3292 KB Output is correct
51 Correct 238 ms 3408 KB Output is correct
52 Correct 224 ms 3264 KB Output is correct
53 Correct 239 ms 3472 KB Output is correct
54 Correct 224 ms 3108 KB Output is correct
55 Correct 254 ms 3616 KB Output is correct
56 Correct 214 ms 3148 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 204 KB Output is correct
2 Correct 1 ms 204 KB Output is correct
3 Correct 0 ms 204 KB Output is correct
4 Correct 1 ms 204 KB Output is correct
5 Correct 0 ms 204 KB Output is correct
6 Correct 0 ms 204 KB Output is correct
7 Correct 0 ms 204 KB Output is correct
8 Correct 0 ms 204 KB Output is correct
9 Correct 20 ms 2324 KB Output is correct
10 Correct 5 ms 844 KB Output is correct
11 Correct 12 ms 1648 KB Output is correct
12 Correct 14 ms 1840 KB Output is correct
13 Correct 19 ms 2016 KB Output is correct
14 Correct 14 ms 1476 KB Output is correct
15 Correct 3 ms 588 KB Output is correct
16 Correct 12 ms 1420 KB Output is correct
17 Correct 26 ms 3284 KB Output is correct
18 Correct 17 ms 1992 KB Output is correct
19 Correct 1 ms 204 KB Output is correct
20 Correct 1 ms 204 KB Output is correct
21 Correct 1 ms 204 KB Output is correct
22 Correct 1 ms 332 KB Output is correct
23 Correct 1 ms 332 KB Output is correct
24 Correct 1 ms 332 KB Output is correct
25 Correct 1 ms 332 KB Output is correct
26 Correct 0 ms 332 KB Output is correct
27 Correct 1 ms 308 KB Output is correct
28 Correct 0 ms 204 KB Output is correct
29 Correct 2 ms 332 KB Output is correct
30 Correct 0 ms 332 KB Output is correct
31 Correct 1 ms 332 KB Output is correct
32 Correct 1 ms 332 KB Output is correct
33 Correct 1 ms 332 KB Output is correct
34 Correct 8 ms 1228 KB Output is correct
35 Correct 21 ms 3016 KB Output is correct
36 Correct 33 ms 3652 KB Output is correct
37 Correct 64 ms 3144 KB Output is correct
38 Correct 77 ms 3528 KB Output is correct
39 Correct 20 ms 2872 KB Output is correct
40 Correct 1 ms 332 KB Output is correct
41 Correct 15 ms 1612 KB Output is correct
42 Correct 25 ms 3140 KB Output is correct
43 Correct 5 ms 588 KB Output is correct
44 Correct 19 ms 2212 KB Output is correct
45 Correct 25 ms 2532 KB Output is correct
46 Correct 27 ms 3396 KB Output is correct
47 Correct 9 ms 1356 KB Output is correct
48 Correct 1 ms 332 KB Output is correct
49 Correct 58 ms 2924 KB Output is correct
50 Correct 32 ms 3280 KB Output is correct
51 Correct 39 ms 3008 KB Output is correct
52 Correct 32 ms 3188 KB Output is correct
53 Correct 31 ms 3444 KB Output is correct
54 Correct 63 ms 3252 KB Output is correct
55 Correct 27 ms 3020 KB Output is correct
56 Correct 33 ms 3152 KB Output is correct
57 Correct 27 ms 3004 KB Output is correct
58 Correct 230 ms 3292 KB Output is correct
59 Correct 238 ms 3408 KB Output is correct
60 Correct 224 ms 3264 KB Output is correct
61 Correct 239 ms 3472 KB Output is correct
62 Correct 224 ms 3108 KB Output is correct
63 Correct 254 ms 3616 KB Output is correct
64 Correct 214 ms 3148 KB Output is correct
65 Correct 1 ms 204 KB Output is correct
66 Correct 0 ms 204 KB Output is correct
67 Execution timed out 2036 ms 3268 KB Time limit exceeded
68 Halted 0 ms 0 KB -